

Your partner for radioactive sources

RADIOACTIVE SOURCES FOR NUCLEAR FACILITIES

© Orano, JOLY EMMANUEL

Hundreds of radioactive sources are used in nuclear facilities to control and calibrate equipment. This brochure addresses 4 key application fields :

HEALTH PHYSICS

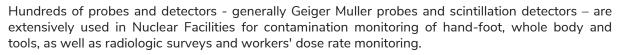
Detection of radioactive contamination and exposure of nuclear facilities' workers

RADIATION MONITORING SYSTEMS

Monitoring of radiation levels in ambient air and released effluents

LABORATORIES

Detection and characterization of radionuclides in process or environment samples


WASTE CHARACTERIZATION

Radiological characterization of solid wastes for storage purpose

For each application, this brochure presents the most common equipment used in nuclear facilities and relevant sources that LEA can supply.

Don't hesitate to contact us for further information <u>sales@lea-sources.com</u> <u>www.lea-sources.com</u>

HEALTH PHYSICS

All these systems must be calibrated and periodically checked with adequate radioactive sources : wide sources for <mark>radiation monitors</mark>, capsules for <mark>dosimeters</mark>, linear sources for <mark>anthropomorphic phantoms</mark>.

Typical sources provided for such equipment are :

	Radiation Monitors	Dosimeters	Anthropo-radiametry
Nuclides	α, β, γ emitters	γ emitters	γ emitters
	²³⁹ Pu, ²⁴¹ Am, ¹⁴ C, ⁶⁰ Co, ¹³⁷ Cs, ⁹⁰ Sr	⁶⁰ Co, ¹³⁷ Cs	⁶⁰ Co, ¹³³ Ba, ¹³⁷ Cs
Activities	From 50 Bq to 10 kBq	From 10 to 500 MBq	From 100 Bq to 2 kBq
Geometries	Wide sources From 3 to 120 mm diameter or	Capsules From 5 to 8 mm diameter	Linear sources 5 mm diameter x 160 mm height
	100x100 mm and 100x150 mm	and 5 to 15 mm height	

RADIATION MONITORS

Nuclear workers are often screened or scan themselves in several locations inside radiological controlled zones, to ensure that they have not been contaminated during operations.

MOBILE SYSTEMS Immediately nearby workplaces, portable polyradiameters are widely used to screen the most likely contamination locations (hands, feet, head, respiratory tract protection device, tools,...)

Portable Polyradiameter

FIXED SYSTEMS Between workplaces a

Between workplaces and radiological uncontrolled zones, several automatic measurement devices are used to detect contamination on objects, tools or workers

Objects or tools monitor

Hand-Foot Monitor

Whole body monitors

Wide Disc Source (example)

Types		Radionuclides	Activities
Disc -	α	²³⁹ Pu, ²⁴¹ Am	0.05 – 0.1 – 0.4 – 0.5 kBq
	β	¹⁴ C, ⁶⁰ Co, ¹³⁷ Cs, ⁹⁰ Sr	1 – 2 – 4 – 6 – 8 kBq
Square-	α	²⁴¹ Am	0.4 – 1 kBq
	β	⁶⁰ Co, ¹³⁷ Cs, ⁹⁰ Sr	4 kBq

Wide Square Source (example)

Like radiation protection devices for contamination monitoring, active gamma dosimeters need to be periodically checked.

These calibrations can be performed with small gamma and neutron irradiators, powered by a radioactive capsule (typically in the range of hundreds of MBq or GBq of ⁶⁰Co,¹³⁷Cs,²⁵²Cf, AmBe).

Probes and radiameters or radiation beacons can also be checked with such a device.

Gamma Irradiator © NUVIA

ANTHROPO-RADIAMETRY

BOMAB – BOttle Mannikin ABsorber – and IGOR phantoms are used to calibrate whole body counting systems. These mannikins are filled with radioactive sources in order to simulate internal contaminations.

The BOMAB phantom is composed of 10 polyethylene cylindrical or elliptical bottles, filled with a radioactive liquid.

The IGOR phantom is composed of 70 right-angled polyethylene blocs, filled with linear sealed sources. For each IGOR, LEA produces hundreds of linear sources, composed of gamma emitters – 60 Co, 133 Ba, 137 Cs, 152 Eu – alone or mixed.

BOMAB

Tube dimensions : Ø 5 mm x h 160 mm

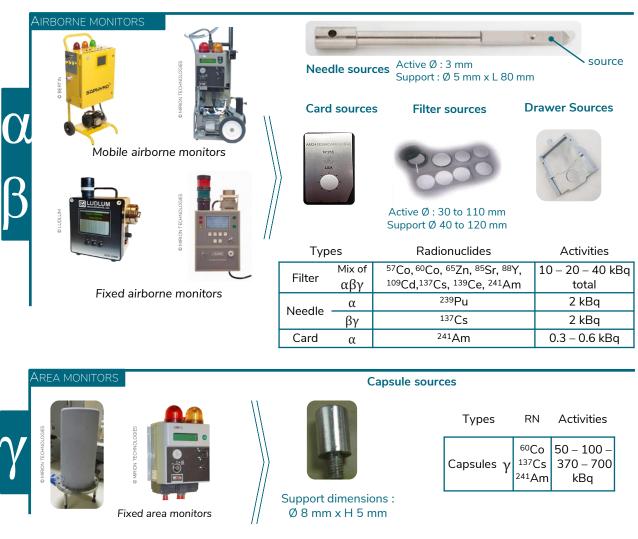
Available activities (for one source) : 100 Bq – 200 Bq – 500 Bq – 1 kBq – 1.5 kBq

IGOR™

More sources/nuclides available upon request

RADIATION MONITORING SYSTEMS

Radiation Monitoring Systems are used in nuclear facilities to measure radioactivity of liquid or gaseous effluents, and airborne or area radioactivity.


Liquid and gaseous effluents are continuously generated by operating Nuclear Power Plants (for instance the radioactivity potentially released in the environment must be controlled and monitored).

Airborne and area radioactivity are continuously monitored inside radiological controlled zones with fixed systems, to ensure that workers are not exposed to internal contamination. In addition to this collective protection, mobile systems are deployed immediately nearby workplaces.

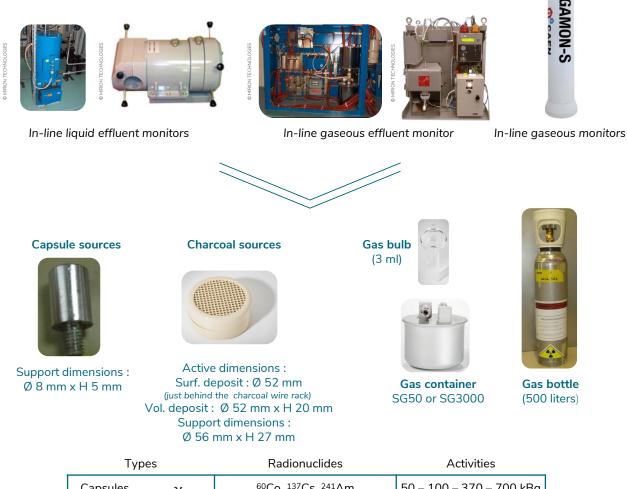
These systems are calibrated and periodically checked with appropriated radioactive sources : needles or filters for airborne monitors, capsules, charcoals or gas containers for effluents monitors.

AIRBORNE AND AREA MONITORING

Inside radiological controlled zones, airborne and area radioactivity are monitored with fixed beacons and mobile devices.

More sources available upon request

orano


5

RADIATION MONITORING SYSTEMS

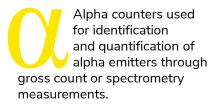
LIQUID AND GASEOUS EFFLUENTS RELEASE MONITORING

Monitoring any release of liquid or gaseous effluents is crucial to protect people and the environment around nuclear facilities. Most frequently measured radionuclides around NPPs are ³H, ¹⁴C and iodines.

These measurements are performed with in-line or off-line systems which are calibrated and periodically checked with appropriate standard, sealed (capsules, charcoals) or unsealed (gas) sources.

Types		Radionuclides	Activities
Capsules	γ	⁶⁰ Co, ¹³⁷ Cs, ²⁴¹ Am	50 – 100 – 370 – 700 kBq
Gas	γ	⁸⁵ Kr	240 kBq – 100 MBq
Charcoal	γ	¹³³ Ba, ¹³⁷ Cs, ¹⁵² Eu	4 kBq
	Mix of $lphaeta\gamma$	⁵¹ Cr, ⁵⁴ Mn, ⁵⁷ Co, ⁶⁰ Co, ⁶⁵ Zn, ⁸⁵ Sr, ⁸⁸ Y, ¹⁰⁹ Cd, ¹¹³ Sn, ¹³⁷ Cs, ¹³⁹ Ce, ²⁴¹ Am	20 kBq total

More sources available upon request



A wide variety of radioactive sources is used in Radiochemistry and Environment laboratories in order to calibrate and check potential deviation of equipment, mainly on Alpha & Gamma counters and spectrometers, as well as Liquid scintillators:

- Single or mixed $\alpha,\,\beta,\,\gamma$ emitters
- Multiple geometries and matrices (solid, liquid, resin...)
- Activities from 80 Bq to 1 GBq

TYPICAL APPLICATIONS

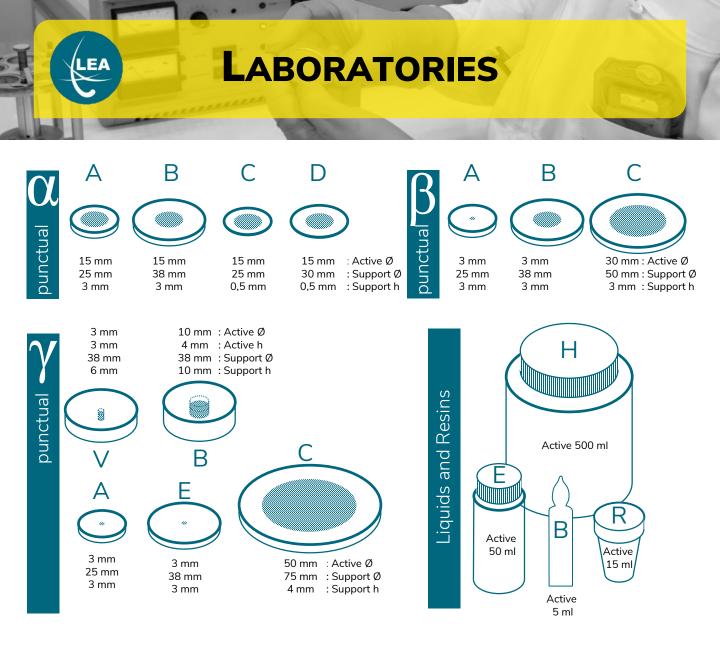
Liquid scintillation counters for quantification of pure beta emitters such as ³H, ¹⁴C, ⁹⁰Sr in liquid samples.

Gamma ray detectors made with HPGe (High Purity Germanium) crystal for quantification of γ emitters (^{137m}Ba, ^{110m}Ag,...) or $\alpha\gamma$ emitters (²³⁹Pu, ²⁴¹Am,...) or $\beta\gamma$ emitters (¹³⁷Cs, ⁶⁰Co, ¹⁵²Eu, ¹³³Ba,...).

Punctual α source (²³²U, ²³³U, ²³⁸Pu, ²³⁹Pu, ²⁴²Pu, ²⁴¹Am, ...)

β liquid source (³H, ¹⁴C, ³⁶Cl, ⁹⁰Sr, ...)

 $\boldsymbol{\gamma}$ sources kit

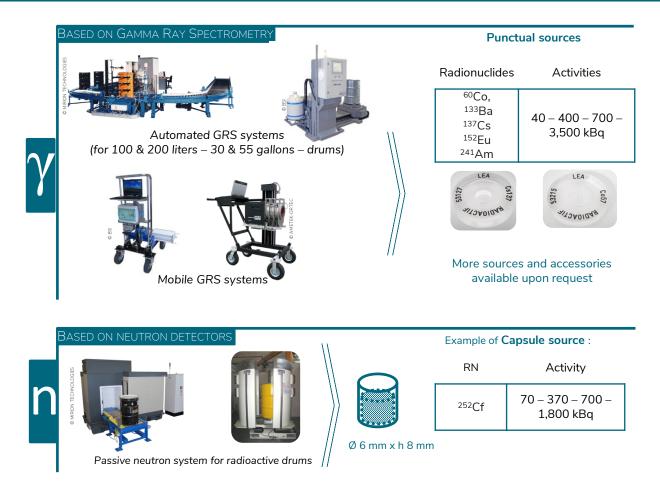

(¹³⁷Cs, ⁶⁰Co, ¹⁵²Eu, ¹³³Ba, ...)

γ or multi γ resin source (¹³⁷Cs, ¹⁵²Eu, mix, ...)

FREQUENTLY PURCHASED SOURCES

Types		Radionuclides	Activities	
Punctual	α	²³⁸ Pu, ²³⁹ Pu, ²⁴¹ Am, ²⁴⁴ Cm	0.3 – 3 kBq	
	β	¹⁴ C, ³⁶ Cl, ⁶⁰ Co, ¹³⁷ Cs, ¹⁴⁷ Pm, ⁹⁰ Sr	0.08 – 3 kBq	
	γ	⁶⁰ Co, ¹³³ Ba, ¹³⁷ Cs, ¹⁵² Eu	4 – 40 – 80 – 400 – 3,500 kBq	
Resin	γ	⁶⁰ Co, ¹³⁷ Cs, ¹⁵² Eu	5 – 37 – 100 – 420 kBq	
Liquid	α	²⁴¹ Am, ²⁴³ Am, ²⁴⁴ Cm	0.8 – 4 – 200 kBq	
	β	³ H, ¹⁴ C, ⁵⁵ Fe	200 – 400 – 4,000 kBq	
	γ	⁶⁰ Co, ¹³⁴ Cs, ¹³⁷ Cs, ¹⁵² Eu	20 – 200 – 4,000 kBq	

More sources available upon request


Before leaving nuclear facilities for storage or disposal, nuclear wastes are characterized with several Non Destructive Assay (NDA) systems. One purpose of these NDA technics is to sort out waste according to AIEA thresholds : HLW (High Level Waste), ILW (Intermediate Level Waste), LLW (Low Level Waste) and VLLW (Very Low Level Waste).

Most of the NDA systems are composed of gamma ray spectrometers and passive neutron systems. NDA systems are often linked to a modeling software to calculate the efficiency curve of the drum to be assayed but radioactive sources are still required for calibration and periodical checks of detectors' efficiencies.

The most common radioactive sources (tens kBq to several MBq) are as follows:

- γ emitters (¹⁵²Eu, ¹³³Ba, ⁶⁰Co, ¹³⁷Cs, ²⁴¹Am, ...)
- Neutron emitters (²⁵²Cf, AmBe)

TYPICAL NDA SYSTEMS

Special sources such as drums filled with a tailor-made matrix and adapted radioisotopes can be developed upon request

Laboratoire d'Etalons d'Activité

Laboratoire accrédité COFRAC*, établi au cœur de la plateforme industrielle du Tricastin, le LEA **conçoit, produit et distribue des sources radioactives** d'étalonnage et de contrôle.

Le LEA s'appuie sur un réseau de partenaires industriels pour apporter des solutions optimales, notamment pour la fourniture et la reprise de sources de fortes activités ou dédiées à des applications spécifiques.

A COFRAC-accredited lab based at the Tricastin industrial platform in South of France, LEA **engineers, manufactures and distributes radioactive sources** for calibration and control purposes.

LEA is able to leverage a wide network of industrial partners to provide optimal solutions, in particular for the supply and recovery of high-activity sources and sources dedicated to specific applications.

*accréditation n° 2-6386. Portée disponible sur www.cofrac.fr accreditation n°2-6386. Scope available at www.cofrac.fr

LEA - Laboratoire d'Etalons d'Activité

Site Orano du Tricastin BP75 - 26701 Pierrelatte Cedex, France

Tel. : +33 (0)4 75 96 56 00 Fax : +33 (0)4 75 96 56 40 Mail: <u>sales@lea-sources.com</u>

www.orano.group/lea

This document is part of a series of documents edited by LEA to support our customers, distributors and partners with synthetic information on key applications for radioactive sources. These documents do not intend to provide exhaustive information on equipment nor sources : for further information on our capabilities, or to become one of our distributor or partner, please contact us.

Copyright © 2019 Laboratoire d'Etalons d'Activité, SAS. Orano, the Orano logo and the LEA logo are registered trademarks or trademarks of Orano SA or Laboratoire d'Etalons d'Activité. Trademarks and products mentioned in this document are the property of the respective companies and are published here with their kind permission. Crédits photos © ACM Studio / C.Delestrade.

