Rapport annuel de surveillance de l'environnement Orano la Hague

Édition 2023

PRÉAMBULE

Ce rapport est élaboré pour répondre à l'exigence requise par la décision n° 2016-DC-0569 de l'Autorité de sûreté nucléaire du 29 septembre 2016 modifiant la décision n° 2013-DC-0360 de l'Autorité de sûreté nucléaire du 16 juillet 2013 relative à la maîtrise des nuisances et de l'impact sur la santé et l'environnement des installations nucléaires de base.

En particulier, l'article 5.3.1 stipule que : « Le rapport mentionné à l'article 4.4.4 de l'arrêté du 7 février 2012 susvisé, contient notamment les éléments d'informatior

- le rappel des principales prescriptions relatives aux prélèvements d'eau, aux rejets ou transferts d'effluents et aux nuisances ainsi que les contrôles et la surveillance permettant de vérifier leur respect;
- les bilans annuels des prélèvements et consommations d'eau et des rejets ou transferts d'effluents, précisant notamment :
- leur répartition mensuelle
- l'analyse de l'exploitant vis-à-vis des exigences réglementaires et des prévisions réalisées au titre de l'article 4.4.3 de l'arrêté du 7 février 2012 susvisé,
- la description d'éventuelles opérations exceptionnelles de prélèvements d'eau ou de rejets ou de transferts d'effluents
- les règles de comptabilisation des effluents utilisées en application des articles 3.2.7 et 3.2.8 :
- le bilan des mesures de surveillance de l'environnement ;
- la synthèse des informations résultant de l'application du ll de l'article 3.1.4, du III de l'article 3.2.23 et du I de l'article 3.3.2 :
- une information sur les modifications apportées au voisinage de l'installation nucléaire de base et sur les évolutions scientifiques depuis le dernier rapport susceptibles de modifier les conclusions de l'étude d'impact;
- une synthèse de l'impact environnemental et de l'impact sanitaire de l'installation sur la base des rejets réels et des scenarii présentés dans l'étude d'impact ; cette synthèse comprend notamment l'estimation des doses reçues par les groupes de référence dont les caractéristiques sont rappelées dans le rapport, selon les modalités fixées à l'article 5.3.2 ;
- à l'article 5.3.2 ; • une synthèse des principales opérations de maintenance intervenues dans les équipements et ouvrages nécessaires
- intervenues dans les équipements et ouvrages nécessaires aux prélèvements d'eau ou aux rejets ou transferts d'effluents;
- la liste et description succincte des évènements significatifs entrant dans le champ d'application de la présente décision et ayant fait l'objet d'une déclaration en application de l'article 2.6.4 de l'arrêté du 7 février 2012 susvisé ainsi que des mesures correctives prises par l'exploitant;
- la mise en perspective pluriannuelle des résultats : comparaison avec les résultats antérieurs au regard de l'activité industrielle susceptible de produire des rejets d'effluents ou des nuisances, avec les résultats relatifs à l'état de référence pertinent le plus ancien;
- la présentation des actions réalisées par l'exploitant pour améliorer sa maîtrise de l'impact de l'installation sur la santé et l'environnement.

SOMMAIRE

04 Avant-propos

06 L'établissement Orano la Hague

État des prélèvements annuels dans l'eau

Les rejets gazeux

Les rejets liquides

Bilan mesures de surveillance sur les rejets et l'environnement

- La surveillance de radioactivité dans l'environnement terrestre
- La surveillance de radioactivité dans le milieu marin (p. 53)
- La surveillance physico-chimique et biologique de l'environnement (p. 61)

67 Impact dosimétrique aux groupes de référence

7 Écarts et incidents

76 Protection de l'environnement

79 Annexe

124 Résultats détaillés

48 Bibliographie

152 Glossaire

Le 7 mars 2024, Bruno Le Maire, ministre de l'Économie, des Finances et de la Souveraineté industrielle, et Roland Lescure, Ministre délégué chargé de l'Industrie de France, ont annoncé la poursuite des activités de recyclage du combustible au-delà de 2040, ainsi que le lancement d'études pour une nouvelle usine de fabrication de combustibles MOX et une nouvelle usine de traitement des combustibles sur le site de la Hague. Ces annonces historiques offrent des perspectives inédites pour nos salariés et nos partenaires industriels.

Nos perspectives d'avenir ont été confortées en 2024, mais nos fondamentaux ne changent pas : il faudra nous renouveler en garantissant toujours le plus haut niveau de sûreté, de sécurité et de protection.

L'année 2023 a marqué le retour à l'un de nos meilleurs niveaux en termes d'accidentologie, avec un taux de fréquence des accidents avec arrêt inférieur à un. Seul le zéro accident est acceptable pour la sécurité de tous. Il est atteignable, et nous nous attacherons à poursuivre la dynamique portée par notre démarche « Zéro Accident » en y intégrant nos entreprises partenaires présentes sur le site.

Au-delà de la sécurité des travailleurs, la maîtrise des installations et des activités nucléaires est une obligation pour les acteurs de notre industrie. C'est notre responsabilité individuelle, collective et sociétale : nous le devons au territoire, à toutes les personnes qui vivent à nos côtés.

Pour ce faire, nous sommes tous mobilisés : collaborateurs du groupe et des entreprises partenaires, à chaque niveau de nos organisations, pour une culture de sûreté et de protection physique sans cesse renforcée.

Les équipes Orano s'entraînent pour cela au quotidien sur le terrain. En 2023, dix exercices majeurs dont deux inopinés mettant en œuvre le plan d'urgence interne ont été organisés. Quant aux déclarations d'évènement sur l'échelle INES, leur nombre reste stable avec 32 évènements de niveau 0 et 1 évènement de niveau 1 pour l'année 2023.

Toutes nos actions sont guidées et structurées par notre démarche d'engagements, notre raison d'être. Dans la feuille de route 2019-2025 que nous avons construite il y a 4 ans, nous avons pris des engagements auprès de la Direction Générale du Groupe dans le but de limiter notre empreinte environnementale, qui sont des objectifs de réduction drastique de nos émissions de CO2, de notre consommation en énergie et en eau. Nous sommes aujourd'hui conformes au point de passage prévu.

Concernant la maîtrise et le renouveau de nos équipements, l'année 2023 restera une année charnière pour le site avec la mise en place et le raccordement des 3 nouveaux évaporateurs de concentration de produits de fission de

l'usine UP3, équipements majeurs du procédé, introduits en remplacement d'anciens équipements dont la durée d'exploitation était arrivée à son terme.

Le planning a été tenu dans les délais, preuve de notre savoir-faire à piloter de grands projets stratégiques, et les opérations de démarrage se sont déroulées conformément à l'attendu. Je tiens ici à saluer le travail des équipes, tant du côté du projet que du côté de l'exploitant, tous deux indispensables au bon déroulement d'un projet d'une telle envergure.

Ce projet n'est pour autant pas terminé car nous réalisons actuellement les raccordements et les essais des 3 nouveaux évaporateurs de notre seconde usine, UP2-800. Le retour d'expérience acquis sur UP3 est précieux et nous sommes confiants pour réaliser un démarrage de ces nouveaux évaporateurs avant la fin du deuxième trimestre 2024.

Pour accompagner cette dynamique, nous avons besoin de nouveaux talents, de personnalités, de profils venant de tous horizons pour construire ensemble le futur de l'industrie nucléaire.

Le groupe accueille chaque année dans le Cotentin plus de 300 alternants et a effectué 600 recrutements de CDI et CDD en 2023. Nous continuerons sur le même rythme en 2024. Pour atteindre ces objectifs, nos équipes travaillent à tisser des liens avec les établissements scolaires et les grandes écoles pour expliquer notre activité, nos métiers, nos perspectives. Nous travaillons également avec l'Agence Régionale de l'Orientation et des Métiers, en participant aux différents évènements qu'elle organise. Cette agence, aux côtés de la Maison de l'Emploi et de la Formation du Cotentin, pilote un dispositif dont Orano est à l'initiative avec 3 autres industriels, EDF, Naval Group et LM Wind Power pour faire découvrir aux lycéens et aux collégiens les métiers de l'industrie grâce au dispositif Cotent'Industries dont l'objectif est de donner, très tôt dans leur scolarité, le goût de l'industrie aux jeunes

L'avenir s'annonce passionnant pour notre site et pour la filière nucléaire.

Je veux enfin terminer en parlant des salariés, ceux d'Orano, mais aussi ceux de nos entreprises partenaires, qui chaque jour s'engagent sur le terrain avec le professionnalisme qui les caractérise. Nous avons ensemble, un très bel avenir à construire.

Les INB sont réglementées par le Code de l'environnement aux articles L. 593-1 et suivants et aux articles R. 593-1 et suivants.

Le régime applicable aux INB concerne aussi bien la création, la mise en service et le fonctionnement des INB que leur arrêt définitif, leur démantèlement et leur déclassement.

La création d'une INB doit respecter la procédure prévue par le Code de l'environnement. En effet, la création d'une INB est soumise à autorisation. L'exploitant dépose une demande d'autorisation de création auprès du ministre chargé de la sûreté nucléaire, et en adresse une copie à l'ASN. Cette demande est accompagnée d'un dossier très complet (conformément aux dispositions de l'article R. 593-16 du code de l'environnement) démontrant l'adéquation des dispositions envisagées pour limiter ou réduire les risques et inconvénients que présente l'installation sur les intérêts mentionnés à l'article L. 593-1 du Code de l'environnement, à savoir la sécurité, la santé et la salubrité publiques et la protection de la nature et de l'environnement. Les éléments constitutifs du dossier seront mis à jour ou complétés au cours des grandes étapes de la vie d'une INB que sont sa mise en service, ses modifications en cours d'exploitation, ses réexamens périodiques, son arrêt définitif, son démantèlement.

Récemment promulguée, la loi n° 2023-491 du 22 juin 2023 introduit des évolutions visant à garantir la sûreté des installations en intégrant les effets du changement climatique. Ainsi, la démonstration de sûreté de l'installation (constituant une des pièces du dossier de demande de création d'une INB) doit dorénavant tenir compte des conséquences du changement climatique sur les agressions externes à prendre en considération dans le cadre de celle-ri

La demande d'autorisation de création et le dossier dont elle est assortie sont transmis au préfet du ou des départements concernés et à l'autorité environnementale. Parallèlement, ces derniers organisent les consultations locales et les enquêtes publiques. C'est à l'issue de cette procédure qu'est délivré, par décret du ministre chargé de la sureté nucléaire, le Décret d'Autorisation de Création (DAC) d'une INB. Le DAC fixe le périmètre et les caractéristiques de l'INB ainsi que les règles particulières auxquelles doit se

conformer l'exploitant nucléaire. Ce décret est complété par une décision de l'ASN qui précise les limites de prélèvement d'eau et de reiets liquides et gazeux autorisés pour l'INB. Cette décision de l'ASN est homologuée par arrêté du ministre chargé de la sûreté nucléaire. Les valeurs limites d'émission, de prélèvements d'eau et de rejet d'effluents de l'installation sont fixées sur la base des meilleures techniques disponibles (MTD) dans des conditions techniquement et économiquement acceptables, en prenant en considération les caractéristiques de l'installation, son implantation géographique et les conditions locales de l'environnement.

Une procédure identique est prévue pour autoriser l'exploitant à modifier de façon substantielle son INB, ou à la démanteler après mise à l'arrêt.

Évolution des référentiels

ÉVOLUTIONS RÉGLEMENTAIRES

En matière de radioprotection, on note :

- Le décret n°2023-498 du 21 juin 2023 relatif à la protection des travailleurs contre les risques dus aux rayonnements ionisants visant au renforcement de la protection des travailleurs contre les risques dus aux rayonnements ionisants, notamment en matière de compétences des professionnels de santé au travail assurant le suivi individuel des travailleurs exposés et de certification des entreprises extérieures intervenant en zones contrôlées.
- L'arrêté du 16 novembre 2023 définissant les modalités de calcul des doses efficaces et des doses équivalentes résultant de l'exposition des

personnes aux rayonnements ionisants visant à la mise à jour des modalités de calculs des doses efficaces et des doses équivalentes telles que mentionnées à l'article R. 1333-24 du code de la santé publique et à l'article R. 4451-12 du code du travail

En matière de sûreté-environnement, on relève :

 L'arrêté du 16 février 2023 portant homologation de la décision n° 2022-DC-0749 de l'Autorité de sûreté nucléaire du 29 novembre 2022 modifiant notamment la décision n°2015-DC-0508 de l'ASN du 21 avril 2015 relative à la gestion des déchets et au bilan des déchets produits dans les INB. La décision n°2015-DC-0508 modifiée définit en outre les éléments relatifs à la gestion des déchets devant figurer respectivement dans l'étude d'impact et dans les Règles Générales d'Exploitation des INB.

VEILLE RÉGLEMENTAIRE ET CONFORMITÉ DES INSTALLATIONS

Le bulletin mensuel de l'Actualité du Droit Nucléaire et de l'Environnement (ADNE), édité par la Direction Juridique du groupe Orano depuis 2003 et qui a fêté ses 20 ans cette année, permet d'assurer une veille réglementaire efficace.

Depuis 2020, selon un processus rénové et piloté par la Direction centrale HSE du groupe Orano, la veille réglementaire et l'appréciation de la conformité des installations à la réglementation HSE est réalisée par les sites à l'aide de l'outil dénommé « Red on line ». L'année 2023 a été marquée par :

- L'atteinte et le maintien de tous les objectifs de performance du processus de veille et de conformité, revus à la hausse en 2022 (maintien à jour des référentiels, nombre d'évaluations d'applicabilité et de conformité réalisées, taux de conformité obtenus),
- L'intégration dans l'outil de nouvelles activités et entités opérationnelles du groupe Orano,
- La participation active du groupe Orano aux actions d'amélioration de l'outil.

Par ailleurs, dans le cadre de son processus de veille, le groupe Orano a poursuivi ses contributions et participé à de nombreux échanges et consultations au sein de divers groupes de travail d'experts portant sur les évolutions réglementaires à venir, projetées par l'ASN, et visant à l'amélioration de la sûreté nucléaire et de la radioprotection.

RÉVISION DU RÉFÉRENTIEL PRESCRIPTIF ORANO

En 2023, la Liste des Documents Applicables au groupe Orano a été régulièrement actualisée, notamment avec :

• La création d'une procédure relative à l'organisation

- du groupe en matière de retour et de partage d'expérience (REX/PEX) des événements survenus intéressant la sûreté, la sécurité industrielle, l'environnement et la radioprotection, ainsi que la mise à jour de la procédure décrivant les modalités d'information et de déclaration des événements alimentant ce REX/PEX,
- La mise à jour de la procédure relative à la vérification de la conformité des installations à leur référentiel applicable,
- La création d'une procédure relative aux règles et recommandations en matière de levage et de manutention mécanique, issues du retour d'expérience et dans l'objectif de renforcer la maitrise des risques liés à ces opérations,
- La création d'une procédure relative aux règles de consignation – déconsignations des équipements ou installations électriques, mécaniques ou de fluides liquides et gaz, à respecter dans toutes installations du groupe,
- La mise à jour des procédures relatives au protocole de mesures et de reporting des mesures environnementales, de dosimétrie et d'accidentologie,
- La mise à jour de la procédure décrivant les missions, l'organisation le fonctionnement et les moyens du Service Prévention et Santé au Travail (SPST) du groupe et la création d'une procédure relative au suivi médical des collaborateurs intérimaires ayant recours au SPST d'Orano, en application de la loi de renforcement de la prévention en santé au travail du 2 août 2021 et de ses décrets d'application.

RÉVISION DES RÉFÉRENTIELS DE SÛRETÉ DES INSTALLATIONS DU GROUPE

Ils sont mis à jour dans le cadre du processus de gestion de la documentation et dans le cadre des processus administratifs tels que les modifications d'INB ou encore les réexamens périodiques. Par ailleurs, dans le cadre du comité méthodologique sûreté du groupe mis en place en 2019, plusieurs thématiques de la démonstration de protection des intérêts ont été développées en 2023.

HISTORIQUE

1959

Le Commissariat à l'énergie atomique et aux énergies alternatives (CEA) décide de créer l'usine de traitement « UP2 », destinée à traiter les combustibles usés des réacteurs de la filière « UNGG » (Uranium naturel-graphite-gaz).

1961

Par décret, sont déclarés d'utilité publique les travaux de construction d'un centre de traitement de combustibles irradiés au cap de La Hague.

1962

Début des travaux de construction de l'usine.

1963

Création officielle, par le CEA, d'un établissement dénommé « Centre de la Hague ».

1964

Déclaration des installations nucléaires de base (INB) du « Centre de la Hague » : « usine de traitement des combustibles irradiés de la Hague » (INB N° 33) et « station de traitement des déchets radioactifs » (INB N° 38).

1966

Mise en service actif de l'usine « UP2 » (réception des premiers combustibles « UNGG »).

1967

Entrée en fonctionnement industriel des INB N° 33 et N° 38. Parution du décret d'autorisation de création de l'atelier

« ELAN IIB » (INB N° 47) destiné à la fabrication de sources de césium, de strontium ou d'autres produits de fission.

1969

L'atelier « AT1 » (inclus dans l'INB N° 38) est mis en service : atelier pilote de traitement des combustibles de la

filière

« à neutrons rapides », sa production s'est arrêtée en 1979, et il a été totalement assaini.

1970

Mise en service de l'atelier « ELAN IIB » (INB N° 47), sa production s'est arrêtée en 1973. L'atelier a été partiellement assaini.

1974

Le CEA est autorisé à modifier « UP2 » par la création d'un atelier de traitement des combustibles de la filière « à eau légère » (INB N° 80, dénommée « HAO » pour « Haute activité oxyde »). L'atelier a une capacité nominale de traitement de 400 tonnes de métal lourd par an (« UP2 » devient « UP2-400 »).

1959

Le Commissariat à l'énergie atomique et aux énergies alternatives (CEA) décide de créer l'usine de traitement « UP2 », destinée à traiter les combustibles usés des réacteurs de la filière « UNGG » (Uranium naturel-graphite-gaz).

1961

Par décret, sont déclarés d'utilité publique les travaux de construction d'un centre de traitement de combustibles irradiés au cap de La Hague.

1962

Début des travaux de construction de l'usine.

1963

Création officielle, par le CEA, d'un établissement dénommé « Centre de la Hague ».

1964

Déclaration des installations nucléaires de base (INB) du « Centre de la Hague » : « usine de traitement des combustibles irradiés de la Hague » (INB N° 33) et « station de traitement des déchets radioactifs » (INB N° 38).

1966

Mise en service actif de l'usine « UP2 » (réception des premiers combustibles « UNGG »).

1967

Entrée en fonctionnement industriel des INB N° 33 et N° 38. Parution du décret d'autorisation de création de l'atelier

« ELAN IIB » (INB N° 47) destiné à la fabrication de sources de césium, de strontium ou d'autres produits de fission.

1969

L'atelier « AT1 » (inclus dans l'INB N° 38) est mis en service : atelier pilote de traitement des combustibles de la filière

« à neutrons rapides », sa production s'est arrêtée en 1979, et il a été totalement assaini

1970

Mise en service de l'atelier « ELAN IIB » (INB N° 47), sa production s'est arrêtée en 1973. L'atelier a été partiellement assaini.

1974

Le CEA est autorisé à modifier « UP2 » par la création d'un atelier de traitement des combustibles de la filière « à eau légère » (INB N° 80, dénommée « HAO » pour « Haute activité oxyde »). L'atelier a une capacité nominale de traitement de 400 tonnes de métal lourd par an (« UP2 » devient « UP2-400 »).

1976

Traitement des premiers combustibles de la filière « à eau légère » sur « UP2-400 ».

1978

La responsabilité de l'exploitation des INB N° 33, 38, 47 et 80 est transférée

du CEA à la Compagnie générale des matières nucléaires (COGEMA).

1980

Pour faire face à l'augmentation des besoins de traitement, par décrets, sont déclarés d'utilité publique, les travaux d'accroissement de la capacité de traitement du centre de la Hague.

1981

COGEMA est autorisée par décrets à créer :

- l'usine « UP3-A » (INB N° 116), d'une capacité annuelle de traitement de l'ordre de 800 tonnes de combustibles usés de la filière à eau légère ;
- l'usine « UP2-800 » (INB N° 117) de vocation et capacité identiques ;
- « STE3 » (INB N° 118), nouvelle station de traitement des effluents liquides des deux nouvelles usines.

1984

Mise en service actif progressive des nouvelles installations :

- de 1986 à 2001 pour UP3-A ;
- de 1984 à 2002 pour UP2-800 ;
- de 1987 à 1997 pour STE3.

1987

Arrêt du traitement de combustibles « UNGG » sur UP2-400.

2003

Par décrets, la capacité de traitement d'UP3-A et UP2-800 est portée à 1 000 tonnes par an et par installation, dans la limite d'un traitement de 1 700 tonnes par an pour l'ensemble des deux installations ; la gamme des combustibles susceptibles d'être traités est élargie.

2004

Arrêt définitif du traitement de combustibles dans « UP2-400 » (INB N°33, 38 et 80).

2007

Suite au décret approuvant les

modifications des statuts de COGEMA, AREVA NC assure les responsabilités d'exploitant nucléaire des INB N° 33, 38, 47, 80, 116, 117 et 118 (décret du 30 novembre 2007 approuvant des modifications de statuts de la Compagnie générale des matières nucléaires - AREVA NC).

2009

Publication, le 31 juillet 2009, du décret autorisant AREVA NC à procéder aux opérations de mise à l'arrêt définitif et de démantèlement de l'installation nucléaire de base N° 80, dénommée atelier « Haute activité oxyde » et située sur le centre de la Hague.

2013

Publication le 8 novembre 2013 des trois décrets d'autorisation de mise à l'arrêt définitif et de démantèlement partiels pour les INB 33 («UP2-400»), 38 («STE2» et «AT1») et complet pour l'INB 47 («ELAN IIB»).

2014

Publication de la décision N° 2014 DC-0472 de l'ASN du 9 décembre 2014, fixant les prescriptions auxquelles doit satisfaire la société AREVA NC pour ce qui concerne la reprise et le conditionnement des déchets anciens dans les INB 33, 38, 47, 80, 116, 117, 118 du site de la Hague.

2015

Publication des décisions N° 2015-DC-0535 et N° 2015-DC-0536 modifiée par la Décision 2022-DC-0724 de l'ASN du 22 décembre 2015, encadrant les rejets des installations du site.

2016

 Publication du décret N° 2016-71 du 29 janvier 2016, modifiant le décret du 12 mai 1981 d'autorisation de création de STE3 (INB 118). Publication des décrets N° 2016-740 et N° 2016-741 du 2 juin 2016, modifiant les décrets du 12 mai 1981 d'autorisation de création de l'usine UP3-A (INB 116) et de l'usine UP2-800 (INB 117).

2017

Publication de la décision N° 2017-DC-0612 de l'ASN du 26 octobre 2017 relative à la modification des échéances prescrites en matière de reprise et de conditionnement des déchets contenus dans le silo 130 de l'INB 38.

2018

Publication de la décision N° CODEP-DRC-2018-020903 du Président de l'ASN du 15 juin 2018, autorisant Orano à effectuer la modification de la ventilation du bâtiment Silo 130 et le raccordement actif de la ventilation de l'installation de reprise et de conditionnement des déchets de l'installation nucléaire de base N° 38, dénommée STE2.

2019

- Publication de la décision N° CODEP-DRC-2019-008267 du Président de l'ASN du 20 février 2019 autorisant Orano Cycle à remplacer l'évaporateur 6314.30 de l'atelier R7 de l'installation nucléaire de base N° 117, dénommée « usine UP2-800 ».
- Publication de la décision
 N° CODEP-DRC-2019-009253
 du Président de l'ASN du 7 mars
 2019 autorisant la première
 phase de reprise et de
 conditionnement intermédiaire
 des déchets contenus dans le
 Silo 130 de l'INB N° 38,
 dénommée STE2.
- Publication de la décision N° 2019-DC-0665 de l'ASN du 9 avril 2019 fixant des prescriptions complémentaires

- applicables aux INB N° 33 (UP2-400), N° 38 (STE2), N° 47 (Elan IIB), N° 80 (HAO), N° 116 (UP3-A), N° 117 (UP2-800) et N° 118 (STE3) au vu des conclusions des évaluations complémentaires de sûreté (ECS).
- Publication de la décision N° 2019-DC-0673 de l'ASN du 25 juin 2019 fixant les prescriptions applicables aux INB N° 33, 38 et 47 dénommées UP2 400, STE2 et AT1, et Atelier Elan IIB, au vu des conclusions de leur réexamen périodique.
- Publication de la décision N° 2019-DC-0682 de l'ASN du 12 novembre 2019 fixant des prescriptions relatives à la reprise et au conditionnement des déchets contenus dans le silo 130 de l'INB N° 38, dénommée « STE2 ».

2020

- Publication de la décision N° 2020-DC-0685 de l'ASN du 13 février 2020 modifiant la décision N° 2014-DC-0422 du 11 mars 2014 en accordant à Orano Cycle un report d'échéance des prescriptions relatives au traitement des aiguilles de combustibles irradiés issues du réacteur à neutrons rapides Phénix et modifiant la décision N° 2016-DC-0554 du 3 mai 2016 en autorisant la mise en oeuvre, au plus tard le 31 mars 2020, d'au moins un exemplaire des systèmes de transport Hermès/Mercure et navette à operculaire améliorés ;
- Publication de la décision
 N° CODEP-CAE-2020-015687
 du Président de l'ASN du 6 mars
 2020 autorisant Orano Cycle à
 modifier les modalités
 d'exploitation autorisées des
 installations nucléaires de base
 N° 33 (UP2-400), 38 (STE2 et
 AT1), 47 (ELAN II B), 80 (HAO),
 116 (UP3-A), 117 (UP2-800) et
 118 (station de traitement des
 effluents STE3);
- Publication de la décision N° CODEP-DRC-2020-022420 du Président de l'ASN du 11 mai 2020 autorisant Orano Cycle à procéder à la modification portant sur le procédé des

- nouvelles concentrations des produits de fission et sur la mise en surveillance des anciens évaporateurs de l'atelier T2 appartenant à l'INB N° 116, dénommée « usine UP3-A » ;
- Publication de la décision
 N° CODEP-DRC-2020-027288
 du Président de l'ASN du 13 mai
 2020 autorisant Orano Cycle à
 implanter des équipements
 nécessaires à la reprise des
 boues issues de la station de
 traitement des effluents et
 déchets solides et entreposés
 dans l'installation nucléaire de
 base N° 38:
- Publication de la décision N° CODEP-CAE-2020-028049 du Président de l'ASN du 18 mai 2020 autorisant Orano Cycle à modifier de manière notable les modalités d'exploitation autorisées de l'INB N° 117, dénommée « usine UP2-800 »;
- Publication de la décision
 N° 2020-DC-0690 de l'ASN du
 28 juillet 2020 fixant à Orano
 Cycle des prescriptions relatives
 à la reprise et au
 conditionnement des déchets
 contenus dans le silo HAO et les
 piscines du SOC de l'installation
 nucléaire de base N°80,
 dénommée atelier « Haute
 activité oxyde », dans
 l'établissement de la Hague et
 modifiant la décision N° 2014 DC-0472 de l'ASN du 9
 décembre 2014 ;
- Publication de la décision
 N° CODEP-DRC-2020-047984
 du Président de l'ASN du 6
 octobre 2020 autorisant la
 modification portant sur les
 raccordements actifs et la
 réalisation des essais de la fosse
 50 de l'atelier E/EV/LH2 de l'INB
 N° 116, dénommée « usine
 UP3-A », de l'établissement
 Orano Cycle de la Hague;
- Publication du décret du 27 novembre 2020 autorisant la société Orano Cycle à modifier l'installation nucléaire de base N° 116, dénommée « UP3-A », implantée dans l'établissement de la Hague (département de la Manche) et modifiant le décret du 12 mai 1981, autorisant la société Orano Cycle à entreposer dans son installation « UP3-A » 5 928 colis supplémentaires de

déchets issus du traitement de substances radioactives.

2021

- Publication de la décision
 N° CODEP-DRC-2021-001065
 de l'ASN du 5 janvier 2021
 autorisant Orano Cycle à
 modifier les raccordements actifs
 de la nouvelle concentration des
 produits de fission de l'atelier T2,
 dite « NCPF T2 », à l'atelier T2
 existant appartenant à l'INB
 N° 116, dénommée « usine
 UP3-A ».
- Publication de la décision N° CODEP-DRC-2021-003961 de l'ASN du 29 janvier 2021 autorisant la prolongation d'exploitation de la ligne de transfert d'effluents liquides entre l'atelier R7 et l'unité NCP1, dans les INB N° 117, dénommée « usine UP2-800 », et N° 33, dénommée « usine UP2-400 ».
- Publication de la décision N° CODEP-DRC-2021-006379 de l'ASN du 2 mars 2021 autorisant le procédé des nouvelles concentrations des produits de fission et la mise en surveillance, ou l'utilisation en cuve relais, des anciens évaporateurs de l'atelier R2 de l'INB N° 117, usine UP2-800 de La Hague.
- Publication de la décision N° CODEP-DRC-2021-008820 de l'ASN du 2 mars 2021 autorisant la modification portant sur les raccordements actifs des nouvelles concentrations des produits de fission et sur la mise en surveillance ou l'utilisation en cuves-relais des anciens évaporateurs de l'atelier R2 appartenant à l'INB N° 117, dénommée UP2-800.
- Publication de la décision N° CODEP-CAE-2021-023413 de l'ASN du 19 mai 2021 autorisant Orano Recyclage à aménager une troisième alvéole d'entreposage de fûts de déchets alpha au sein de l'INB N° 118, dénommée « STE 3 ».
- Publication de la décision N° CODEP-CAE-2021-023912 de l'ASN du 21 mai 2021 autorisant Orano Recyclage à conditionner des fûts ECE vides

- dans l'atelier de compactage des coques et embouts au sein de l'INB N° 116, dénommée « usine UP3-A ».
- Publication de la décision N°
 CODEP-DRC-2021-049057 de
 l'ASN du 03/11/2021 autorisant
 Orano Recyclage à réaliser des
 opérations de réception, de
 déchargement et d'entreposage
 de rebuts d'assemblages
 combustibles MOX non irradiés
 au moyen d'emballages TN 12/2
 munis de paniers 902 dans
 l'atelier NPH de l'INB N°117.

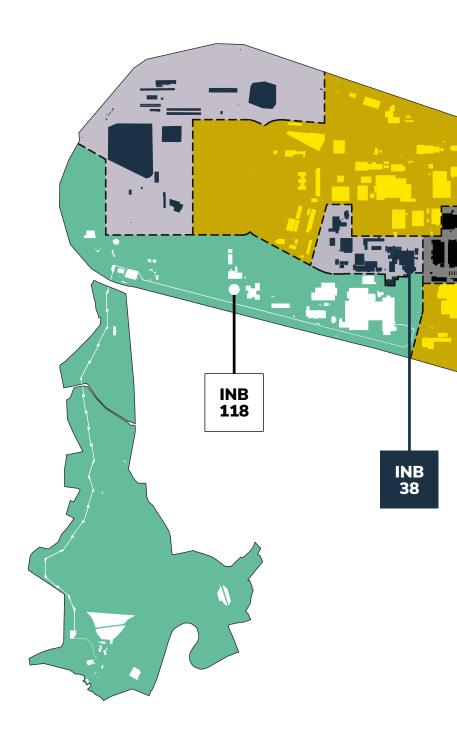
2022

- Décision N°CODEP-DRC-2022-000522 du Président de l'Autorité de sûreté nucléaire du 28 janvier 2022 autorisant Orano Recyclage à modifier le plan d'urgence interne de l' établissement de La Hague pour y intégrer un scénario d'accident de criticité survenant dans le cadre des opérations de manutention d'assemblages de combustible en piscine.
- Décision N° CODEP-CAE-2022-011514 du Président de l'Autorité de sûreté nucléaire du 2 mars 2022 autorisant Orano Recyclage à modifier de manière notable les modalités d'exploitation autorisées de l'atelier DRV (INB N° 117).
- Décision N° CODEP-CAE-2022-012836 du Président de l'Autorité de sûreté nucléaire du 10 mars 2022 autorisant Orano Recyclage à modifier de manière notable l'usine « UP2-800 » (INB no 117). (Modification relative à la réception, au chargement, à l'expédition et à la maintenance de l'emballage de transport TN843 au sein de l'atelier 5AHD).
- Décision N° CODEP-DRC-2022-012405 du Président de l'Autorité de sûreté nucléaire du 5 avril 2022 autorisant Orano Recyclage à mettre en œuvre des dispositions de maîtrise du risque d'incendie pour les bâtiments 114-1, 114-2 et 114-5 de l'installation nucléaire de base N°38, de l' établissement Orano Recycle la Hague.
- Décision N° CODEP-CAE-2022-018758 du Président

- de l'Autorité de sûreté nucléaire du 11 avril 2022 autorisant Or ano Recyclage à modifier de manière notable les modalités d'exploitation autorisées de l'atelier DRV (INB N° 117). (Prolongation de la durée d'utilisation d'une source scellée d' 241AmBe (source scellée N°002/12 H12001)). ANNULE ET REMPLACE LA DECISION N°CODEP-CAE-2022-011514 du 2 mars 2022.
- Décision N° CODEP-DTS-2022-012120 du Président de l'Autorité de sûreté nucléaire du 12 avril 2022 autorisant Orano Recyclage à modifier de manière notable les modalités d'exploitation autorisées de l'installation nucléaire de base N° 47, atelier ELAN IIB, exploitée sur le site de La Hague. (Transport interne de substances radioactives - Autorisation de modification notable portant sur l'utilisation de l'emballage DC6 pour le transport de la capsule N° 13 de titanate de strontium de l'atelier ELAN IIB vers D/E EB).
- Décision N° CODEP-DRC-2022-017460 du Président de l'Autorité de sûreté nucléaire du 14 avril 2022 autorisant Orano Recyclage à modifier de manière notable les modalités d'exploitation de l'atelier BST1 de l'INB N° 117, dénommée « usine UP2-800 », de l' établissement de la Hague. (Demande d'autorisation de modification notable portant sur la création d'un entreposage de rebuts Boîte MOX dans l'atelier BST1).
- Décision N° CODEP-CAE-2022-019145 du Président de l'Autorité de sûreté nucléaire du 5 mai 2022 autorisant Orano Recyclage à mettre en place un confinement dynamique du bâtiment ADT2 de l'atelier d'entreposage des déchets solides (EDS), au sein de l'installation nucléaire de base N° 116, dénommée « UP3-A ».
- Décision N° CODEP-CAE-2022-021026 du Président de l'Autorité de sûreté nucléaire du 11 mai 2022 autorisant Orano

- Recyclage à modifier de manière notable les modalités d'exploitation autorisées de l'atelier AD2, au sein de l'installation nucléaire de base N° 116, dénommée « UP3-A ». (Remplacement des systèmes d'extinction au halon-1301 au sien de l'atelier AD2 Indisponibilité du système d'extinction supérieure au délai d'une semaine)
- Décision N° CODEP-CAE-2022-018730 du Président de l'Autorité de sûreté nucléaire du 16 mai 2022 autorisant Orano Recyclage à réaliser le raccordement actif, les essais actifs et la mise en service actif de l'unité 6620 pour la décontamination des solvants usés, au sein de l'installation nucléaire de base N° 118, dénommée « STE 3 ».
- Décision N° CODEP-DRC-2022-024257 du Président de l'Autorité de sûreté nucléaire du 19 mai 2022 autorisant Orano Recyclage à modifier la liste des essais intéressants la sûreté associée à la nouvelle unité de concentration des produits de fission de l'atelier T2 (NCPF-T2) de l'INB N° 116 (UP3-A).
- Décision N° CODEP-DRC-2022-015328 du Président de l'Autorité de sûreté nucléaire du 25 mai 2022 autorisant Orano Recyclage à procéder à la mise en place de la nouvelle charpente du silo 115 de l'installation nucléaire de base N° 38, située sur le site de La Haque.
- Décision N° CODEP-CAE-2022-021359 du Président de l'Autorité de sûreté nucléaire du 7 juin 2022 autorisant Orano Recyclage à réaliser les opérations de reprise du bitume dans les cuves de l'atelier MAPu au sein de l'installation nucléaire de base N° 33, dénommée « usine de traitement des combustibles irradiés UP2-400 ».
- Décision N° CODEP-DRC-2022-019931 du Président de l'Autorité de sûreté nucléaire du 15 juin 2022 autorisant Orano Recyclage à raccorder les évents des évaporateurs 4120-21, 22 et 23 de l'atelier T2 de l'INB N° 116

- (UP3-A) à l'unité 3005 du même atelier.
- Décision N° CODEP-DRC-2022-028877 du Président de l'Autorité de sûreté nucléaire du 15 juillet 2022 autorisant Orano Recyclage à procéder à la mise en service partielle de la cellule de reprise et de conditionnement en fûts ECE des déchets du silo HAO et des piscines du SOC dans l'installation nucléaire de base N° 80, dénommée atelier « Haute activité oxyde» et située sur le site de La Hague (département de la Manche.
- Décision N° CODEP-CAE-2022-041261 du Président de l'Autorité de sûreté nucléaire du 18 aout 2022 autorisant Orano Recyclage à modifier de manière notable les modalités d'exploitation autorisées dans les ateliers R1 (INB 117) et T1 (INB 116) (PROLONGATION DE LA DURÉE D'UTILISATION DE 4 SOURCES SCELLÉES DE COBALT 60)
- Décision N° CODEP-CAE-2022-041484 du Président de l'Autorité de sûreté nucléaire du 19 août 2022 autorisant Orano Recyclage à modifier de manière notable les modalités d'exploitation autorisées sur le site de La Hague. (Projet Convergence — Modification de l'organisation générale du site de La Hague).
- Décision N° 2022-DC-0740 de l'Autorité de sûreté nucléaire du 8 septembre 2022 autorisant l'introduction de colis de déchets radioactifs dans la fosse 50 de l'atelier E/EV/LH2 de l'installation nucléaire de base N° 116, dénommée usine « UP3-A », exploitée par Orano Recyclage dans l' établissement de la Hague (département de la Manche).
- Décision N° CODEP-DRC-2022-040704 du Président de l'Autorité de sûreté nucléaire du 15 septembre 2022 autorisant Orano Recyclage le traitement des chemises provenant de réacteurs à eau bouillante (chemises REB) dans

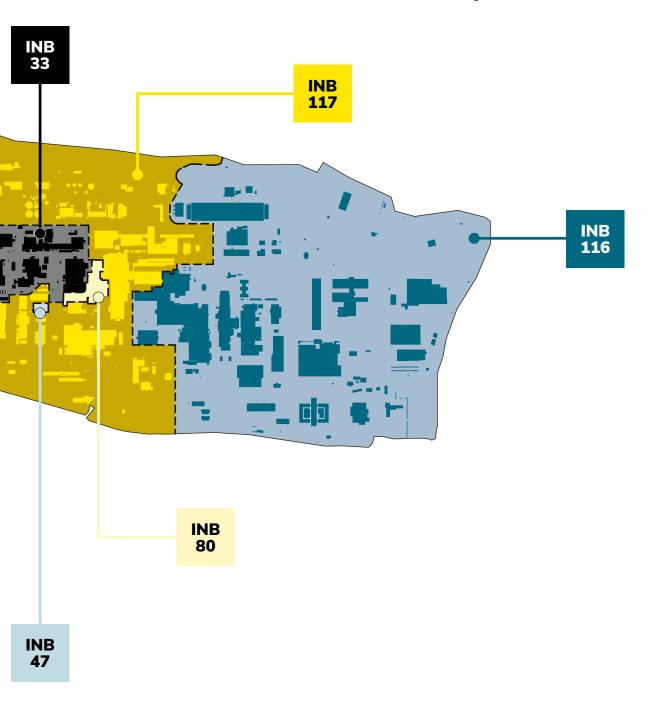

- les ateliers T1, D/E EDS et ACC de l'INB N° 116 (UP3-A)
- Décision N° CODEP-DRC-2022-029863 du Président de l'Autorité de sûreté nucléaire du 16 septembre 2022 autorisant Orano Recyclage à introduire des substances radioactives dans les évaporateurs de l'unité NCPF T2 de l'usine UP3-A (INB N° 116).
- Décision N° CODEP-CAE-2022-046581 du président de l'Autorité de sûreté nucléaire du 21 septembre 2022 autorisant Orano Recyclage à procéder aux opérations d'assainissement des sols à proximité du ruisseau des l'andes
- Décision N° CODEP-CAE-2022-047062 du Président de l'Autorité de sûreté nucléaire du 5 octobre 2022 autorisant Orano Recyclage à modifier de manière notable l'exploitation pour l'extraction d'un crayon d'un assemblage combustible MOX irradié au sein de l'atelier NPH (INB no 117).
- Décision N° CODEP-DTS-2022-054440 du président de l'Autorité de sûreté nucléaire du 16 novembre 2022 autorisant Orano Recyclage à modifier de manière notable le « système de transport interne CEFE », exploité sur le site de la Hague.
- Décision N° CODEP-DRC-2022-051148 du Président de l'Autorité de sûreté nucléaire du 17 novembre 2022 autorisant Orano Recyclage à prolonger l'exploitation de la ligne de transfert d'effluents liquides entre l'atelier R7 et l'unité NCP1 de l'atelier HAPF, respectivement dans les installations nucléaires de base N° 117, dénommée « usine UP2-800 », et N°33, dénommée « usine UP2-400 », de l'établissement de la Haque.
- Décision N° 2022-DC-0724 de l'Autorité de sûreté nucléaire du 16 juin 2022 modifiant la décision N° 2015-DC-0536 modifiée par la Décision 2022-DC-0724 de l'Autorité de sûreté nucléaire du 22 décembre

- 2015 fixant les valeurs limites de rejet dans environnement des effluents liquides et gazeux des installations nucléaires de base N° 33 (UP2-400), 38 (STE2 et AT1), 47 (ELAN II B), 80 (HAO), 116 (UP3-A), 117 (UP2-800) et 118 (STE3) exploitées par AREVA NC sur le site de La Hague (département de la Manche).
- Décision N° CODEP-CAE-2022-057897 du président de l'Autorité de sûreté nucléaire du 2 décembre 2022 autorisant Orano Recyclage à modifier les modalités d'exploitation autorisées des installations nucléaires de base N° 33 (UP2-400), 38 (STE2 et AT1), 47 (ELAN II B), 80 (HAO), 116 (UP3-A), 117 (UP2-800) et 118 (station de traitement des effluents STE3); (Prescriptions encadrant les rejets de la Hague).
- Décision N° CODEP-DRC-2022-053863 du président de l'Autorité de sûreté nucléaire du 12 décembre 2022 autorisant Orano Recyclage à modifier les installations nucléaires de base nos 116 et 117 de La Hague afin de recevoir, décharger, entreposer et traiter des assemblages combustibles à base d'oxyde mixte d'uranium et de plutonium irradiés dits « combustibles MOX EPZ ».
- Décision N° CODEP-CAE-2022-060363 du Président de l'Autorité de sûreté nucléaire du 16 décembre 2022 autorisant Orano Recyclage à modifier de manière notable les modalités d'exploitation autorisées sur l' établissement de La Hague
- (Autorisation de modification des Règles Générales d'Exploitation
 Approbation des pôles de compétence en radioprotection).

7 installations nucléaires de base

Le site est constitué de 7
Installations nucléaires de base (INB), d'une installation classée pour la protection de l'environnement (ICPE) en complément de celles nécessaires au fonctionnement des INB, et de 14
IOTA (Installations, ouvrages, travaux et activités, Art. L.214-1 du Code de l'environnement).

Usine UP3 A Usine de traitement des combustibles et conditionnement des déchets	INB 116
Usine UP2 800 Usine de traitement des combustibles et conditionnement des déchets	INB 117
Atelier STE3 Station de traitement n°3 des effluents liquides des 2 usines UP3 et UP2	INB 118
Usine UP2 400 l ^è unité de production des combus- tibles d'une capacité de 400 tonnes/an, aujourd'hui à l'arrêt	INB 33
Ateliers STE2 et AT1 Respectivement, station de traitement n°2 des effluents liquides et ancien ate- lier de traitement des combustibles usés	INB 38
Atelier ÉLAN IIB Atelier de fabrication de sources ra- dioactives, aujourd'hui à l'arrêt	INB 47
Atelier HAO Atelier Haute Activité Oxyde créé pour le traitement des combustibles à eau légère, aujourd'hui à l'arrêt	INB 80


Principaux IOTA

- Bassin Est 9921-50A et B
- Barrage des Moulinets
- Station d'épuration des eaux usées domestiques

Installation classée pour la protection de l'environnement (ICPE)

(autres que celles nécessaires au fonctionnement des INB)

Centre d'archives à La Saline (implanté sur la commune d'Équeurdreville) : dépôts de papiers ou combustibles analogues.

Notre activité

Orano valorise les matières nucléaires afin qu'elles contribuent au développement de la société, en premier lieu dans le domaine de l'énergie.

Le groupe propose des produits, technologies et services à forte valeur ajoutée sur l'ensemble du cycle du combustible nucléaire des matières premières au traitement des déchets.

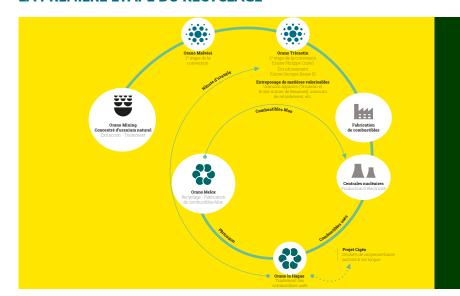
Orano et ses 17 000 collaborateurs mettent leur expertise, leur maîtrise des technologies de pointe, leur recherche permanente d'innovation et leur exigence absolue en matière de sûreté et de sécurité au service de leurs clients en France et à l'international.

Le site Orano la Hague a développé depuis 50 ans un véritable savoirfaire pour offrir aux électriciens nucléaires les moyens de reprise de leurs combustibles (une fois qu'ils ont été exploités dans les centrales nucléaires) puis de recyclage des matières radioactives contenues en vue de leur utilisation future pour de nouveaux combustibles.

À l'issue de la première étape du recyclage à La Hague, les matières réutilisables (c'est-à-dire les 95 % de l'uranium et 1 % du plutonium qui sont contenus dans les combustibles) sont ensuite envoyées vers les autres sites d'Orano pour poursuivre le processus de recyclage, à Melox pour le plutonium et Pierrelatte pour l'uranium.

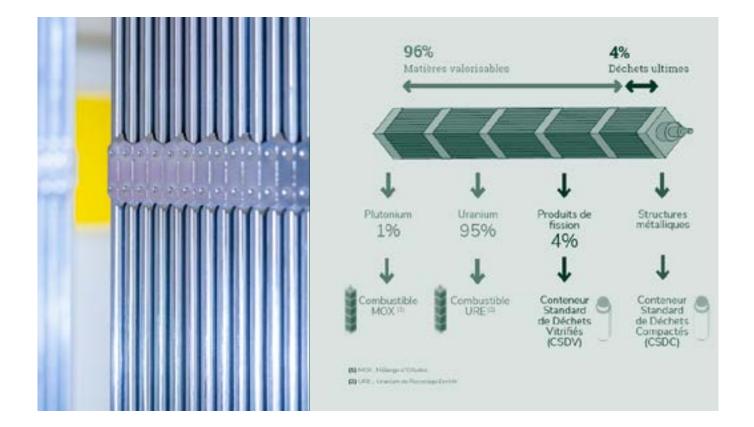
Comme le prévoit la législation, les déchets issus du traitement des combustibles et nommés « résidus » doivent être renvoyés pour les clients étrangers vers leur pays d'origine.

Pour ce faire, les produits de fission (hautement radioactifs mais non valorisables) sont mélangés à une matrice de verres et coulés dans des conteneurs en acier inoxydables (les CSD-V) et quant à la structure des assemblages (composée de « coques » et « embouts ») elle est


découpée, pressée et enfermée dans d'autres conteneurs eux aussi en acier inoxydables (les CSD-C). La valorisation des anciennes installations du site Orano la Hague est devenue une autre activité importante. Développée depuis 2007 au sein d'Orano, elle consiste à chercher à rendre disponible pour de nouvelles activités industrielles les installations nucléaires arrêtées.

96 %

d'un combustible nucléaire usé est recyclable



ORANO LA HAGUE, LA PREMIÈRE ÉTAPE DU RECYCLAGE

Ses activités

couvrent les mines, la chimie de l'uranium, l'enrichissement, le recyclage des combustibles uses, la logistique, le démantèlement et l'ingénierie.

L'ACTIVITÉ DE RECYCLAGE SUR LE SITE ORANO LA HAGUE

Avant de commencer le recyclage, les combustibles dits « usés » passent au minimum six mois dans les piscines de refroidissement à côté du réacteur, puis à l'issue de leur transport dans des emballages blindés répondant aux normes internationales, ils sont déchargés sur le site Orano la Haque et entreposés en piscine avant traitement.

L'étape suivante consiste à cisailler les extrémités de l'assemblage combustible puis à découper ses « crayons » en tronçons de quelques centimètres, ce qui permet d'en extraire la matière nucléaire par dissolution dans de l'acide. Le plutonium et l'uranium ainsi que les produits de fission sont ensuite séparés chimiquement.

En plus des résidus (les CSD-V et CSD-C), la maintenance des ateliers (changement de matériels, vannes ...) produit un certain nombre de déchets dit « technologiques », ces déchets sont pour la plupart peu radioactifs, mais toutefois considérés comme nucléaires, et donc, conformément à la législation, traités de façon adéquate sur l'établissement (selon leur niveau d'activité) puis envoyés vers des centres de stockages agréés.

Les activités des ateliers pour le recyclage induisent la production d'effluents liquides et gazeux. Les effluents liquides sont traités, en majorité, dans les Stations de Traitement des Effluents où ils subissent divers traitements chimiques visant à les décontaminer avant rejet en mer. De même, les effluents gazeux font l'objet de plusieurs traitements successifs d'épuration et de filtration puis ils sont rejetés par des cheminées de 100 m de haut.

DÉMANTELER POUR VALORISER : UN DÉFI MAJEUR

L'activité Démantèlement Fin de Cycle sur le site Orano la Hague

- L'enjeu: reprendre et conditionner les déchets de l'usine UP2 400 exploitée de 1966 à 2003 puis la démanteler dans les meilleures conditions de sûreté et sécurité
- Opérations à distance
- Un programme majeur : 4 Mds€ sur plus de 30 ans, 800 personnes mobilisées, 6 millions d'heures de travail
- L'état final visé : le déclassement administratif pour une réutilisation industrielle
- Bilan 2023 : + de 100 M€ pour l'activité DEM, 42 % d'avancement sur le programme global.

L'eau potable est fournie par la commune nouvelle de La Hague On distingue deux qualités dans les besoins en eau du site :

- l'eau potable,
- l'eau brute.

L'eau potable est fournie par la commune nouvelle de La Hague. Elle est utilisée pour :

- les restaurants,
- les bâtiments PC Sécurité, médical et AT1 (atelier pilote de traitement des combustibles),
- les fontaines à boissons.
- les douches et certains lavabos

L'eau brute nécessaire à l'alimentation du site est fournie principalement par le barrage des Moulinets, qui recueille les eaux pluviales de différents bassins versants. Elle alimente d'une part la centrale de production des eaux, produisant l'eau traitée nécessaire au fonctionnement des installations, d'autre part le réseau d'eau incendie. L'eau traitée produite à partir de l'eau brute est utilisée pour :

- la fabrication d'eau déminéralisée,
- les tours de refroidissement de fluides,
- les sanitaires.

L'eau déminéralisée est utilisée pour :

- la production de vapeur, d'eau de refroidissement, d'eau glacée,
- le procédé de traitement des combustibles,
- les piscines d'entreposage des combustibles.

La retenue d'environ 416 000 m³ créée par le barrage des Moulinets est alimentée en eaux de pluie par trois voies différentes :

- le ruisseau de « Froide Fontaine » qui draine un bassin versant de 68 hectares,
- le bassin ouest de rétention de l'établissement qui recueille les eaux de ruissellement de 125 hectares.
- directement par sa surface de 4,2 hectares.

Le rendement moyen de récupération des eaux de pluie collectées sur ces surfaces est évalué à 45 %, compte tenu de l'évapotranspiration et de la rétention sur les sols non urbanisés. En année de pluviométrie moyenne, soit environ 900 mm de précipitations, l'ensemble des apports des 183 hectares de bassin versant naturel, représente alors environ 800 000 m³.

Bilan 2023

PRÉLÈVEMENTS DANS LE BARRAGE - RÉSERVOIR DES MOULINETS

Les volumes prélevés dans le barrage réservoir des Moulinets ne peuvent dépasser les valeurs suivantes fixées par la Décision ASN 2015-DC-0535 :

	Limites
Prélèvement journalier	2 000 m³
Prélèvement annuel	650 000 m³

Les valeurs des volumes prélevés dans le barrage réservoir sont suivies en continu et relevées chaque jour.

La diminution en 2023 s'explique par l'utilisation privilégiée de l'eau du bassin ouest pour alimenter la centrale de production d'eau du site.

PRÉLÈVEMENTS D'EAU POTABLE

Les valeurs des volumes d'eau provenant du réseau public de distribution d'eau potable sont relevées chaque semaine.

m³/an	2021	2022	2023
Volume	70 568	76 862	57 226

Les dispositions de l'accord entre Orano la Hague et la commune nouvelle de La Hague, en matière de distribution et consommation d'eau potable, ont été respectées.

La diminution en 2023 s'explique par la mise en place de compteurs télérelevables et d'opérations de jouvance des réseaux.

RELEVAGE D'EAU DE LA NAPPE PHRÉATIQUE PAR LE RÉSEAU DE DRAINAGE

Des prélèvements dans la nappe phréatique sont effectués à partir des drains des ateliers R4, Extension EV Sud Est, STE3 et T2 (mise hors d'eau des bâtiments).

L'eau relevée n'est pas destinée à un usage industriel : elle est rejetée en mer avec les effluents GR (voir le chapitre correspondant aux rejets liquides).

Volumes relevés	320 418	285 380	342 485	
m³/an	2021	2022	2023	

m³/an	2021	2022	2023
Prélèvement annuel	529 325	461 249	307 109

Les rejets gazeux

3,1,1, LES REJETS GAZEUX DES INSTALLATIONS NUCLÉAIRES DE BASE

Les effluents gazeux provenant de la ventilation des ateliers et des appareils de procédé subissent divers traitements successifs d'épuration, en fonction de la nature physicochimique des éléments :

- Le tritium: la majeure partie du tritium est piégée sous forme d'eaux tritiées (effluent liquide rejeté en mer); une très faible fraction du tritium est évacuée sous forme gazeuse,
- Le carbone 14 : il est absorbé en partie par des solutions sodiques qui sont ensuite diluées dans les eaux tritiées, Ce carbone est aussi rejeté sous forme de dioxyde de carbone (CO₂),
- L'iode 129: il est absorbé à plus de 96 % par des solutions sodiques, qui sont diluées dans les eaux tritiées; l'essentiel de la partie résiduelle gazeuse est ensuite absorbé dans des filtres à iode composés de zéolithe,
- Les aérosols: ils sont piégés par des filtres à Très Haute Efficacité (T,H,E,), chaque filtre ayant une efficacité de 99,9 %, Ainsi, il n'est pas mesuré de radionucléides artificiels sous forme d'aérosols dans les effluents gazeux,
- Le krypton 85, dont l'impact est très faible, ne subit aucun traitement particulier, Ce gaz inerte n'interagit pas avec la matière et a donc une radiotoxicité très faible,

La majeure partie des effluents radioactifs gazeux (issus du procédé) est rejetée par des

cheminées d'une hauteur de 100 mètres, de manière à favoriser la dispersion et donc de réduire l'impact (les cheminées principales des usines UP2-400, UP2-800 et UP3), Les autres émissaires, liés aux ventilations des bâtiments, ont des hauteurs plus réduites, La radioactivité des rejets est contrôlée en permanence, soit par des mesures en continu, soit par des mesures différées effectuées en laboratoire sur des prélèvements continus, Le tableau suivant présente les valeurs des rejets gazeux pour les années 2021 à 2023,

Analyses

Outre les mesures en continu des aérosols alpha et bêta dont l'objectif est d'identifier rapidement une éventuelle anomalie, les bilans réglementaires sont effectués à partir des analyses suivantes :

1) Tritium

Le Tritium contenu dans les ffluents gazeux est piégé en continu dans quatre barboteurs montés en série, garnis d'eau, Les deux premiers pots piègent la forme oxydée du tritium (vapeur d'eau tritiée HTO), Les pots n° 3 et 4 recueillent les autres formes du tritium (essentiellement du tritium gaz HT) après passage de l'effluent gazeux dans un four catalytique, La concentration en tritium de l'eau des barboteurs est ensuite mesurée par scintillation liquide en laboratoire,

2) lodes radioactifs

Le contrôle s'effectue par une mesure différée en laboratoire de prélèvements continus de l'effluent gazeux sur du charbon actif conditionné dans deux cartouches placées en série,

Les cartouches sont prélevées suivant une fréquence hebdomadaire ou mensuelle, La détermination de l'iode 129 se fait par spectrométrie X, une spectrométrie gamma lui est associée pour mesurer l'iode 131, ainsi que les traces éventuelles d'iode 133,

3) Gaz rares

En ce qui concerne le krypton 85, la mesure est réalisée en continu par une chambre d'ionisation différentielle à circulation de gaz, Le principe consiste à faire circuler, après filtration préalable, l'air prélevé à l'intérieur de la cheminée dans une première chambre d'ionisation et à mesurer le bruit de fond dans une deuxième chambre d'ionisation, les deux chambres étant polarisées en sens inverse, On obtient par soustraction la contribution des gaz, indépendamment des rayonnements extérieurs, Un bilan est effectué à partir des valeurs mesurées en continu,

4) Carbone 14

Le carbone 14 contenu dans les effluents gazeux est piégé dans deux barboteurs en série garnis d'eau sodée, La concentration en carbone 14 de l'eau des barboteurs est ensuite déterminée par scintillation liquide en laboratoire,

5) Autres émetteurs (alpha, bêta et gamma artificiels)

L'air prélevé en continu au niveau de chaque émissaire est filtré sur un filtre fixe qui arrête les aérosols, Les filtres relevés chaque semaine font l'objet d'un comptage des activités globales alpha et bêta, complété si nécessaire par une spectrométrie alpha et gamma, Les mesures sont effectuées après une période de décroissance de cinq jours destinée à éliminer les produits de filiation à vie courte du radon, Elles permettent d'établir l'absence de radioéléments artificiels, Le bilan des activités rejetées pour ces autres émetteurs est ainsi constitué de concentrations en seuil de décision multipliées par les volumes rejetés,

Commentaires

En cas de dysfonctionnements des systèmes de prélèvement ou de mesure en continu du contrôle de radioprotection des rejets gazeux aux cheminées, une procédure précise les modalités de traitement et les critères de communication vers l'Autorité de sûreté nucléaire,

Durant les périodes d'indisponibilité, la redondance

L'activité mensuelle des rejets n'a pas dépassé le sixième des limites annuelles correspondantes.

des dispositifs (appareil de prélèvement pour mesures en différées ou appareil de mesures en continu) permettent généralement de vérifier l'absence d'événement radiologique pendant la période, Au-delà de certaines durées, ces indisponibilités font l'objet d'information à l'Autorité de sûreté nucléaire,

3,1,2, LES REJETS CHIMIQUES GAZEUX DES INB

Une campagne annuelle de mesure des oxydes d'azote (NOx) est effectuée aux cheminées principales ainsi qu'aux cheminées de R4 et STE3,

Des prélèvements d'air sont effectués durant les périodes de fonctionnement des usines ou ateliers concernés

TBq/an TBq : milliers de milliards de becquerels	Limites ⁽¹⁾	2021	2022	2023
Tritium	150	53,8	47,0	54,3
Iodes radioactifs	0,01800	0,00808	0,00627	0,00569
Gaz rares radioactifs dont krypton 85	470 000	294 000	296 000	253 000
Carbone 14	28	16,2	14,1	15,8
Autres émetteurs bêta et gamma artificiels	0,001000	0,00010	0,00010	0,00010
Émetteurs alpha artificiels	0,0000100	0,000000418	0,000000425	0,000000425

 $^{^{\}scriptscriptstyle{(1)}}$ décision ASN 2015-DC-0536 modifiée par la Décision 2022-DC-0724

Les résultats des analyses annuelles figurent ci-après, ils sont comparés aux limites définies dans la décision ASN-2015-DC-0536 modifiée par la décision 2022-DC-0724,

Année 2023	Concentration NOx (mg/Nm³ gaz sec)	Flux horaire (kg/h)
UP2 400	2,00E+00	1,60E+00
UP2 800	4,40E+01	3,70E+00
UP3	1,70E+01	1,90E+00
STE3	2,00E+00	8,00E-01
R4	5,50E+00	6,00E-01

	Limite autorisée	2021	2022	2023
Concentration NOx (mg/Nm³ gaz sec)	450	≤ 72	≤ 52	≤ 44
Flux horaire (kg/h)	50	≤ 7,8	≤ 4,4	≤ 3,7

3,1,3, LES REJETS GAZEUX DES CENTRALES DE PRODUCTION DE CALORIES (CPC)

La Centrale de Production de Calories (CPC) comportant trois chaudières au fioul de puissance thermique unitaire égale à 27 MW a été arrêtée définitivement fin 2023, Les gaz de combustion de chaque chaudière sont évacués par des conduits séparés puis regroupés dans une cheminée située à une hauteur d'environ 51 m, Les rejets à surveiller sont essentiellement le gaz sulfureux (SO₂), le dioxyde de carbone (CO_2), les oxydes d'azotes (NOx), le monoxyde de carbone (CO) et les poussières totales, Le débit de fumée atteint 61 000 Nm³/h au régime nominal de fonctionnement, Les teneurs en oxydes d'azote, en poussières totales, en monoxyde de carbone et dioxyde de soufre sont contrôlées en continu, celles en Hydrocarbures aromatiques polycycliques (HAP), Composés Organiques Volatiles (COV) et de certains métaux sont calculées à partir de la consommation en fuel lourd et domestique et sont mesurés annuellement.

Le tableau suivant présente les rejets gazeux annuels à la CPC et CPCF de 2021 à 2023,

Tonnes	2021	2022	2023
SO ₂	0,8	0,8	0,3
Poussières	0,2	0,1	0,02
NOx	13,0	9,3	0,7
CO ₂	21 707	16 193	1746
СО	0,5	0,5	0,03

Les valeurs limites de rejets définies par l'arrêté du 11 janvier 2016, portant homologation de la décision ASN 2015-DC-0536 modifiée par la Décision 2022-DC-0724 sont :

Paramètres	Flux Horaire (kg/h)	Concentration (mg/Nm³)
Dioxyde de soufre (SO ₂)	135	1700
Poussières totales	4	50
NOx	40	450
со	-	100
НАР	-	0,1
cov	-	110 en carbone total
Cadmium (Cd), mercure (Hg) et thallium (Tl)	-	0,05 par métal et 0,1 pour la somme des composés
Arsenic (As), sélénium (Se), tellure (Te) et leurs composés	-	1 exprimée en (As + Se + Te)
Plomb (Pb) et ses composés	-	1 exprimée en Pb
Antimoine (Sb), chrome (Cr), cobalt (Co), cuivre (Cu), étain (Sn), manganèse (Mn), nickel (Ni), vanadium (V), zinc (Zn) et leurs composés	-	10 exprimée en (Sb + Cr+ Co+ Cu+ Sn + Mn + Ni + V + Zn)

3,1,4, LES REJETS GAZEUX DES CENTRALES DE PRODUCTION DE CALORIES (CPCF)

La Centrale de Production de Calories dite F, (CPCF) comporte deux chaudières au fioul de puissance thermique unitaire égale à 21 MW, Les gaz de combustion de chaque chaudière sont évacués par des conduits séparés puis regroupés dans une cheminée située à une hauteur d'environ 51 m, Les rejets à surveiller sont essentiellement le gaz sulfureux (SO₂), le dioxyde de carbone (CO₂), les oxydes d'azotes (NOx), le monoxyde de carbone (CO) et les poussières totales, Les teneurs en oxydes d'azote, en poussières totales, en monoxyde de carbone et dioxyde de soufre sont contrôlées en continu, celles en Hydrocarbures aromatiques polycycliques (HAP), Composés Organiques Volatiles (COV) et de certains métaux sont calculées à partir de la consommation en fuel domestique et sont mesurés annuellement, Cette installation qui fonctionne en complément de la CPC a été mise en service en juillet 2016 ; elle utilise un combustible de type fuel domestique, conforme à la norme CSR 4-4-06,

Les valeurs limites de rejets définies par l'arrêté du 11 janvier 2016, portant homologation de la décision ASN 2015-DC-0536 modifiée par la Décision 2022-DC-0724 sont :

Paramètres	Flux Horaire (kg/h)	Concentration (mg/Nm³)
Dioxyde de soufre (SO ₂)	13,5	170
Poussières totales	3	30
NOx	15	150
со	-	100
НАР	-	0,01
cov	-	50 en carbone total
Cadmium (Cd), mercure (Hg) et thallium (Tl)	-	0,05 par métal et 0,1 pour la somme des composés
Arsenic (As), sélénium (Se), tellure (Te) et leurs composés	-	1 exprimée en (As + Se + Te)
Plomb (Pb) et ses composés	-	1 exprimée en Pb
Antimoine (Sb), chrome (Cr), cobalt (Co), cuivre (Cu), étain (Sn), manganèse (Mn), nickel (Ni), vanadium (V), zinc (Zn) et leurs composés	ā	20 exprimée en (Sb + Cr+ Co+ Cu+ Sn + Mn + Ni + V + Zn)

Les rejets **liquides**

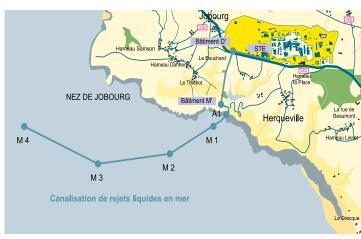
3.2.1. LES REJETS RADIOACTIFS EN MER

Les effluents liquides radioactifs issus du procédé de traitement des matières nucléaires sont rejetés, après traitement éventuel, par la conduite de rejet en mer. Ils sont dénommés :

- V (« à Vérifier ») si l'activité bêta hors tritium est inférieure à 1,85 MBq/L et l'activité alpha inférieure à 3,7 kBq/L,
- A (« Actifs ») dans les autres cas.

Les autres effluents liquides rejetés par la conduite de rejet en mer, qui ne sont pas issus du procédé de traitement, sont dénommés eaux gravitaires à risques (GR). Ils peuvent comporter :

- les eaux de pluies de la plate-forme d'entreposage des colis compatibles avec un entreposage de surface.
- les eaux de pluies de la plate-forme d'entreposage des emballages de transport de combustibles irradiés.
- les eaux de pluies de la plate-forme de reprise des déchets de la zone Nord-Ouest.
- des eaux provenant du réseau de drainage profond destiné à protéger les ateliers des infiltrations d'eaux issues de la nappe phréatique,
- les eaux provenant des réseaux de drainage du Centre de Stockage de la Manche (Andra).
 Les transferts des eaux de l'Andra font l'objet d'un protocole entre les deux établissements.


Les effluents liquides produits par les différents ateliers, lorsque leur activité le justifie, sont traités dans les Stations de Traitement des Effluents, où ils subissent des traitements chimiques, afin de les décontaminer et de les neutraliser chimiquement (les traitements varient en fonction de la nature et de l'activité des effluents). Les effluents sont ensuite filtrés et contrôlés, puis rejetés en mer, dans le cadre des autorisations en vigueur, par une conduite, dont la partie terrestre (souterraine) a une longueur de 2 500 mètres et la partie sous-marine une longueur d'environ 5 000 mètres.

Chaque rejet est réalisé, après analyse de prélèvements représentatifs, sous le contrôle du Secteur Radioprotection Évaluation de l'établissement. Les volumes et activités rejetés figurent sur un registre mensuel qui est envoyé à l'Autorité de sûreté nucléaire. Les volumes rejetés par type d'effluent, ainsi que les activités correspondantes sont présentés dans les tableaux ci-après pour les années 2021 à 2023.

Volumes rejetés par type d'effluents

m³/an	2021	2022	2023
Rejets A	1081	268	0
Rejets V	81 224	77 293	79 698
Rejets GR	511 739	486 666	494 817
TOTAL	594 044	564 227	574 515

Bilans annuels des rejets en TBq

Radioélément	Répartition	Limite	2021	2022	2023
Tritium	global établissement	18 500	10 000	10 500	9 510
Iodes	global établissement	2,6	1,23	1,23	1,18
Carbone 14	global établissement	14	6,97	6,61	6,47
	rejets courants	0,6	0,155	0,083	0,088
Strontium 90	rejets MAD / RCD	9,8	0,012	0,010	0,023
	global établissement	10,4	0,167	0,093	0,111
	rejets courants	1,6	1,18	0,926	1,19
Césium 137	rejets MAD / RCD	4	0,0484	0,053	0,084
	global établissement	5,6	1,23	0,98	1,27
Césium 134	global établissement	0,35	0,082	0,057	0,085
Ruthénium 106	global établissement	7,5	2,37	2,10	1,15
	rejets courants	0,5	0,144	0,129	0,145
Cobalt 60	rejets MAD / RCD	0,5	0,00000042	0,00000898	0,0000252
	global établissement	1,0	0,144	0,129	0,145
	rejets courants	12	3,077	2,582	1,583
Autres émetteurs Bêta Gamma	rejets MAD / RCD	25	0,101	0,039	0,059
	global établissement	37	3,18	2,62	1,642
	rejets courants	0,07	0,0276	0,0243	0,0322
Emetteurs Alpha*	rejets MAD / RCD	0,07	0,0025	0,0026	0,0026
	global établissement	0,14	0,030	0,027	0,0348

Émetteurs alpha* : résultats des comptages alpha

De même que pour les effluents gazeux, les activités rejetées en mer sont pour chacun des paramètres bien en dessous des limites imposées à l'établissement.

Le détail pour les rejets annuels alpha et bêta-gamma est présenté dans les tableaux suivants :

Émetteurs alpha

Radioélément	Activité (TBq)
238 Pu	0,011
239/40 Pu	0,0025
241 Am	0,0034
244 Cm	0,0025
242 Cm	0,000012
237 Np	0,00007
Uranium	0,00222
Radioéléments non identifiés	0,013

Autres émetteurs bêta et gamma

Radioélément	Activités (TBq)
	· ·
106 Rh	1,15
90 Y	0,11
125 Sb	0,06
144 CePr	0,000013
154 Eu	0,00087
155 Eu	0,000007
65 Zn	0,00005
54 Mn	0,0032
57 Co	0,000033
58 Co	0,00037
241 Pu	0,262
99 Tc	0,027
63 Ni	0,023

Procédure de rejet et analyses

Chaque rejet d'effluents radioactifs en mer est réalisé sous le contrôle, par délégation du Directeur de l'établissement, du Secteur Radioprotection Évaluation de la Direction Sécurité, Sûreté, Environnement, Protection. Cet accord de rejet est donné après examen des résultats des mesures opérées sur un prélèvement préalable et dans les limites des autorisations délivrées par les autorités compétentes.

1) Prélèvements des échantillons à analyser

Pour les effluents « V » rejetés par les ateliers STE2-V, R2 et T2 et les effluents « A » ou « V » rejetés par l'atelier STE2-A, un prélèvement est opéré par un banc de prise d'échantillons dans la cuve d'entreposage avant rejet.

Les effluents « A » ou « V » rejetés par l'atelier STE3 (effluents issus du traitement chimique) font l'objet d'un prélèvement en continu au cours du remplissage de la cuve d'entreposage avant rejet.

Ces prélèvements automatiques permettent un échantillonnage représentatif des effluents à rejeter (constitution d'une « aliquote »).

2) Mesures pour autorisation de reiets

Les échantillons d'effluents « A », « V », font l'objet des déterminations suivantes :

- activité volumique alpha,
- activité volumique bêta,
- activité volumique tritium,
- spectrométrie gamma quantitative,
- mesure du pH.

3) Mesures complémentaires

Les échantillons d'effluents « A », « V », font l'objet, après rejet, des mesures complémentaires suivantes :

- activité du strontium 90 (sur aliquotes hebdomadaires),
- activité de l'iode 129 et du carbone 14 (sur aliquotes

- mensuelles),
- activité des isotopes 238, 239 et 240 du plutonium (sur aliquotes mensuelles),
- activité du technétium 99, plutonium 241 et nickel 63 (sur aliquotes mensuelles).
- dosage de l'uranium (sur aliquotes mensuelles).

4) Rejet

Les effluents sont filtrés avant rejet à :

- 25 μm pour les effluents A et V,
- 500 µm pour les effluents GR.

Afin d'obtenir une dilution maximale, la période la plus favorable aux rejets d'effluents « A » déterminée par rapport aux heures de marée est située entre 2 h 30 avant la pleine mer de Diélette et une demi-heure après, soit une durée de rejet de 3 h pendant laquelle environ 400 à 500 m³ d'effluents peuvent être rejetés.

L'opération de rejet d'effluents « V » provenant de R2 et T2 s'effectue, si possible, durant ces mêmes périodes de marée.

3.2.2. LES REJETS CHIMIQUES EN MER

Certaines espèces chimiques sont rejetées en mer après traitement. Les rejets des espèces chimiques par la conduite de rejet en mer se font dans les mêmes conditions que les rejets radiologiques auxquels ils sont associés. Vingt-trois espèces chimiques font l'objet d'une analyse dont les résultats sont transmis à l'Autorité de sûreté nucléaire. Le bilan de ces rejets est également disponible dans les rapports environnement publiés par l'établissement Orano la Hague. Les espèces chimiques des rejets liquides en mer peuvent être classées selon 4 catégories liées à leur origine et utilisation dans l'usine:

Les espèces utilisées ou formées dans le procédé :

• TBP (Tributylphosphate):

- molécule extractante utilisée dans le solvant employé sur les différents cycles d'extractions.
- Nitrates: issus de l'utilisation d'acide nitrique dans le procédé,
- Nitrites: provenant principalement de la recombinaison des vapeurs nitreuses (NOx),
- Hydrazine: produit utilisé comme stabilisant des espèces uranium et plutonium dans le procédé,
- Ammonium : se forme dans le procédé.

Les espèces utilisées dans le traitement des effluents :

- Cobalt : introduction de CoSO₄ permettant la co-précipitation du Ruthénium,
- Baryum : introduction de Ba(NO₃)3 permettant la co-précipitation du Strontium,
- Soufre: introduction de sulfates (H₂SO₄, CoSO₄) et sulfures (Na₂S) dans la chaine de traitement chimique,
- Fer, Nickel, Potassium: introduction de ppFeNi (1) permettant la précipitation du Césium.

Autres métaux lourds :

 Aluminium, Mercure, Chrome, Zinc, Plomb, Manganèse, Zirconium, Cadmium, Antimoine, Argent, Arsenic, Bore, Cérium, Cuivre, Étain, Molybdène, Sélénium, Titane, Uranium, Vanadium

Formes ou paramètres chimiques autres :

- Phosphore
- Fluorure
- DCO⁽²⁾
- Hydrocarbure

L'essentiel des éléments chimiques rejetés en mer provient des effluents de procédé (A, V). Les flux annuels rejetés pour chaque élément chimique ainsi que les limites réglementaires correspondantes sont présentés pour l'année 2023 dans le tableau page suivante.

⁽¹⁾ Précipité préformé de ferro-cyanure de nickel

Espèces		Limites (kg)	Flux annuel 2021 (kg)	Flux annuel 2022 (kg)	Flux annuel 2023 (kg)
	ТВР	2,70E+03	1,2E+03	1,3E+03	8,70E+02
	Nitrates	2,90E+06	1,9E+06	1,69E+06	1,74E+06
Procédé	Nitrite	1,00E+05	3,84E+04	3,69E+04	3,44E+04
	Hydrazine	1,00E+02	6,26E+00	9,74E+00	8,50E+00
	Ammonium	1,00E+03	3,85E+01	5,72E+01	3,52E+01
	Cobalt	2,00E+02	2,86E+00	2,44E+00	3,88E+00
	Baryum	1,80E+02	1,57E+01	1,76E+01	1,68E+01
Γraitement des	Fer	5,00E+02	9,08E+01	8,94E+01	9,38E+01
effluents	Nickel	2,50E+02	2,53E+00	3,25E+00	3,01E+01
	Soufre total	1,60E+04	6,68E+03	6,57E+03	6,58E+03
	Potassium	Sans objet	1,79E+03	1,74E+03	1,66E+03
	Aluminium	5,00E+02	1,94E+02	1,44E+02	1,01E+02
	Chrome	1,30E+02	2,02E+00	2,30E+00	2,58E+00
	Plomb	7,00E+01	7,75E-01	2,48E+00	1,34E+00
	Zirconium	3,50E+01	1,31E+00	1,38E+00	1,70E+00
Autres métaux lourds	Mercure	2,00E+01	9,23E-02	1,02E-01	8,77E-02
	Zinc	1,80E+02	2,73E+01	3,52E+01	3,11E+01
	Manganèse	1,00E+02	1,75E+01	2,39E+01	1,85E+01
	Cadmium	2,50E+01	6,30E-01	5,85E-01	5,98E-01
	Antimoine	1,5E+01	NM	NM	4,77E-01
	Argent	1,0E+01	NM	NM	4,10E-01
	Arsenic	5,0E+00	NM	NM	1,06E+00
	Cuivre	1,5E+01	NM	NM	1,01E+01
	Étain	5,0E+00	NM	NM	3,70E-01
	Sélénium	3,0E+01	NM	NM	5,58E-01
	Vanadium	1,0E+01	NM	NM	3,67E-01
	Bore	1,15E+02	NM	NM	2,01E+01
	Cérium	7,69E+02	NM	NM	2,59E+00
	Molybdène	1,5E+01	NM	NM	5,53E-01
	Titane	1,0E+01	NM	NM	6,38E-01
Autres formes chimiques	Uranium	6,0E+01	NM	NM	2,80E+01
ommidaes	Hydrocarbure	Sans objet	1,92E+02	1,82E+02	1,86E+02
	Phosphore total	2,90E+03	2,23E+02	2,83E+02	2,11E+02
	Fluorure	1,50E+02	3,51E+01	3,84E+01	2,99E+01
	DCO	6,00E+04	1,41E+04	1,43E+04	1,33E+04

Les principales espèces chimiques rejetées en mer sont les nitrates et nitrites dus à l'utilisation d'acide nitrique dans le procédé ainsi que le TBP en tant que solvant utilisé pour le procédé d'extraction de l'uranium et du plutonium. Des efforts importants ont été mis en œuvre depuis 1995 afin de diminuer ces rejets (recyclage de l'acide dans les ateliers, évaporation des effluents, lavage au diluant ...).

Depuis janvier 2015, l'établissement applique les règles prescrites à l'article 3.2.7 de la Décision 2013-DC-0360 de l'ASN modifiée par la décision 2016-DC-0569. Dans le cadre de la mise en œuvre de cette nouvelle règle de comptabilisation, les limites de quantifications (LQ) ont été abaissées.

Cette différence de méthodologie explique les différences sensibles sur les quantités déclarées à partir de l'année 2015 vis-à-vis des années précédentes.

Opérations exceptionnelles

Aucune opération exceptionnelle au sens de l'article 5.3.1 de la Décision 2013-DC-0360 de l'ASN n'a été effectuée en 2023.

3.2.3. LES REJETS DES EAUX USÉES

Les eaux usées sont d'origines domestique (sanitaires, douches ...) et industrielle (hors procédé de traitement des matières nucléaires) et sont rejetées après traitement dans le ruisseau des Moulinets.

• Eaux usées domestiques

Jusqu'en Juin 2008, les eaux usées domestiques étaient traitées dans des bassins de lagunage à l'ouest du site. Cette installation de 15 000 m², reposait sur le principe d'une dégradation lente et biologique des polluants organiques et chimiques. Vieillissante et sous dimensionnée, elle a été remplacée par une nouvelle station d'épuration. Elle utilise un procédé plus performant à « boues activées » qui accélère la dégradation des polluants. Une partie des anciennes lagunes a été réutilisée pour implanter cette installation qui a été mise en service en Juillet 2008.

• Eaux usées industrielles

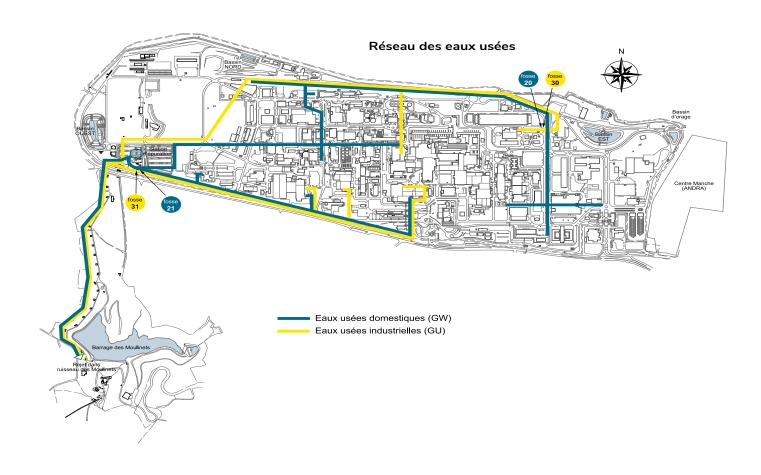
Le réseau des eaux usées industrielles recueille les eaux issues en particulier des fosses de neutralisation des ateliers. Ces eaux peuvent contenir des traces de produits tels qu'hydrocarbures, acides, bases, solvants. Leur traitement est assuré par les ateliers qui restituent des effluents déshuilés et neutralisés. Un bassin de traitement de 1 000 m³ et un bac de 120 m³ permettent un entreposage et une neutralisation complémentaire de ces effluents.

Le débit de rejet de ces effluents pour l'établissement est en moyenne de $1\,000\,\text{m}^3$ par jour soit $350\,000\,\text{m}^3$ par an avec un débit horaire de pointe de $210\,\text{m}^3/\text{h}$.

L'ensemble des fosses du réseau fait l'objet de contrôles, de nettoyages et de curages périodiques.

Schéma de collecte des eaux usées ZONE ZONE NORD OUEST ZONE ZONE EST **ZONE EST** SUD OUEST SUD OUEST NORD OUEST **FOSSE** FOSSE FOSSE FOSSE Station d'épuration à boues Bassin de traitement des eaux usées activées (industrielles et domestiques) Bassin eaux usées Bassin de désinfection Contrôle radiologique Ruisseau des Moulinets

DCO (Demande Chimique en Oxygène) désigne la quantité d'oxygène nécessaire à la dégradation naturelle chimique des matières oxydables contenues dans un effluent aqueux.


DBO (Demande Biologique d'Oxygène) constitue une mesure de pollution des eaux par les matières organiques. Elle correspond à la quantité d'oxygène nécessaire pour oxyder les rejets d'effluents pollués. On la mesure par des tests normalisés après 5 jours d'oxydation des matières organiques, d'où le terme de DBO5.

Les analyses physico-chimiques sont réalisées à partir d'échantillons moyens journaliers représentatifs du rejet (aliquotes), constitués par des prélèvements effectués à l'aide d'un échantillonneur automatique, elles sont réalisées par le Laboratoire LABEO dépendant du Conseil Départemental de la Manche.

Oxygène dissous

Cette mesure est effectuée dans le ruisseau des Moulinets suivant la norme NF EN 25813.

	Valeur	Valeur	Valeur	Valeur
	limite	moyenne	mini	maxi
Oxygène dissous en % de saturation	entre 80 et 120	96,17	81,0	102,8

Bilan des rejets des eaux usées en concentration

Paramètres	Limite autorisée	Concentration hebdomadaire moyenne	Concentration hebdomadaire maximale
DCO	120 mg/L	22,25	42,00
MES	100 mg/L	18,24	55,00
Nitrates (NO ₃)	1500 mg/L	428,29	1160,00
Chlorures	300 mg/L	119,18	254,00
DBO5	30 mg/L	3,94	14,00
Azote Total Organique	30 mg/L	3,34	14,00
Phosphates	20 mg/L	3,33	9,80
Sulfates	360 mg/L	38,10	93,00
Métaux totaux	10 mg/L	1,38	5,07
Aluminium	5 mg/L	0,65	1,82
Cadmium	0.2 mg/L	<0,001	<0,001
Chrome	0.5 mg/L	0,004	0,005
Cuivre	0.5 mg/L	0,010	0,060
Étain	1 mg/L	< 0,002	< 0,002
Fer	5 mg/L	0,64	4,44
Nickel	0.5 mg/L	0,004	0,005
Plomb	0.5 mg/L	0,001	0,004
Zinc	2 mg/L	0,071	0,33
Détergents	10 mg/L	0,075	0,23
Hydrazine	0.05 mg/L	< 0,05	< 0,05
Hydrocarbures	5 mg/L	0,10	0,20

Flux 24 heures

La concentration mesurée sur l'aliquote est multipliée par le volume d'effluents rejetés pendant la période afin de calculer un flux sur 24 heures.

Paramètres	Limite autorisée	Flux moyen	Flux maximum
DCO	30 kg	12,56	24,78
MES	30 kg	10,00	28,50
Nitrates (NO ₃)	2 600 kg	250,13	821,79
Chlorures	500 kg	66,86	135,20
DBO5	10 kg	2,17	8,26
Azote Total Organique	10 kg	1,66	9,46
Phosphates	30 kg	1,90	6,07
Sulfates	429 kg	21,18	46,40
Métaux totaux	6 kg	0,82	3,40
Aluminium	1.8 kg	0,354	0,922
Cadmium	0.07 kg	0,0006	0,0014
Chrome	0.8 kg	0,002	0,006
Cuivre	0.7 kg	0,006	0,048
Etain	0.35 kg	0,001	0,003
Fer	1.8 kg	0,405	2,981
Nickel	0.8 kg	0,0025	0,0060
Plomb	0.35 kg	0,0007	0,0030
Zinc	1.8 kg	0,043	0,262
Détergents	15 kg	0,51	2,00
Hydrazine	0.08 kg	0,03	0,073
Hydrocarbures	5 kg	0,06	0,146

Aucun débit limite de rejet n'a été dépassé, les limites autorisées par les décisions n°2015-DC-0535 et n° 2015-DC-0536 modifiée par la Décision 2022-DC-0724 étant :

Débit et volumes de rejets

Maximal instantané autorisé	74,6 L/s
Moyen maximal sur 2 heures consécutives	2.8 L/s
Moyen maximal sur 24 heures consécutives	16.9 L/s

Flux 2 heures

Paramètres	Limite autorisée	Flux moyen	Flux maximum
DCO	6kg	1,03	2,07
MES	6 kg	0,83	2,38
Nitrates (NO ₃)	300 kg	20,84	68,48
Chlorures	80 kg	5,55	11,27
DBO5	2 kg	0,18	0,69
Azote Total Organique	3 kg	0,14	0,79
Phosphates	5 kg	0,16	0,51
Sulfates	100 kg	1,77	3,87
Métaux totaux	1 kg	0,07	0,28
Aluminium	0.3 kg	0,030	0,077
Cadmium	0.01 kg	0,00003	0,00012
Chrome	0.1 kg	0,0001	0,0005
Cuivre	0.12 kg	0,0004	0,0040
Etain	0.06 kg	0,00005	0,00020
Fer	0.3 kg	0,033	0,248
Nickel	0.1 kg	0,0001	0,0005
Plomb	0.06 kg	0,00003	0,00013
Zinc	0.3 kg	0,003	0,022
Détergents	2 kg	0,023	0,086
Hydrazine	0.008 kg	0,0025	0,0061
Hydrocarbures	1 kg	0,005	0,012

Les volumes annuels de rejets d'eaux usées domestiques sont les suivants :

Eaux usées industrielles et domestiques			
Volume annuel déversé	2021	2022	2023
m³/an	231 097	232 429	210 829

pH:

Les valeurs limites autorisées par les décisions n° 2015-DC-0536 modifiée par la Décision 2022-DC-0724 et n° 2015-DC-0535 pour le pH (entre 6 et 9) n'ont jamais été dépassées en 2023.

Écotoxicité, substance capable d'entraîner la destruction du poisson ou de la flore (test de Vibrio) :

Les concentrations en Vibrio fisheri ont toujours été correctes (supérieures à 80 %).

Surveillance bactériologique

Une surveillance bactériologique des eaux usées rejetées au limnigraphe du ruisseau des Moulinets est réalisée trimestriellement. Les valeurs limites correspondent aux normes des eaux de baignade.

Eschérichia coli : bactérie coliforme thermorésistante, capable de croître à 44°C, qui est commune dans le tube digestif de l'homme mais aussi dans les eaux présentant une pollution microbiologique.

<u>Entérocoques</u>: bactérie présente naturellement dans l'intestin.

Nbre / 100 ml d'eau	Limite	Moyenne	Maximale
Escherichia coli	2 000	150	679
Entérocoques	100	46	56

Ces deux paramètres constituent un indice de contamination des eaux par des matières fécales. Les méthodes utilisées pour les analyses sont les suivantes:

Paramètres	Méthode
pН	NF.T.90-008
MES	NF.EN.872 (SART 13440)
DCO	NF.T.90-101
DBO5	NF.EN.1899-1
Azote Kjeldahl	NF.EN.25663
Chlorures	Chromato-ionique
Sulfates	Chromato-ionique
Orthophosphates	Chromato-ionique

Paramètres	Méthode
Nitrates	Chromato-ionique
Détergents	NF.EN.903
Hydrazine	Rodier 1996
Hydrocarbures	XP.T.90-114
Métaux	FD.T.90-119
Eschérichia coli	ISO 9308-3
Entérocoques	ISO 7899-1
Daphies	NF.EN.ISO 6341

3.2.4. LES REJETS DES EAUX PLUVIALES

Le réseau qui recueille les eaux de pluie drainées et canalisées est dimensionné pour recevoir les pluies d'un orage décennal.

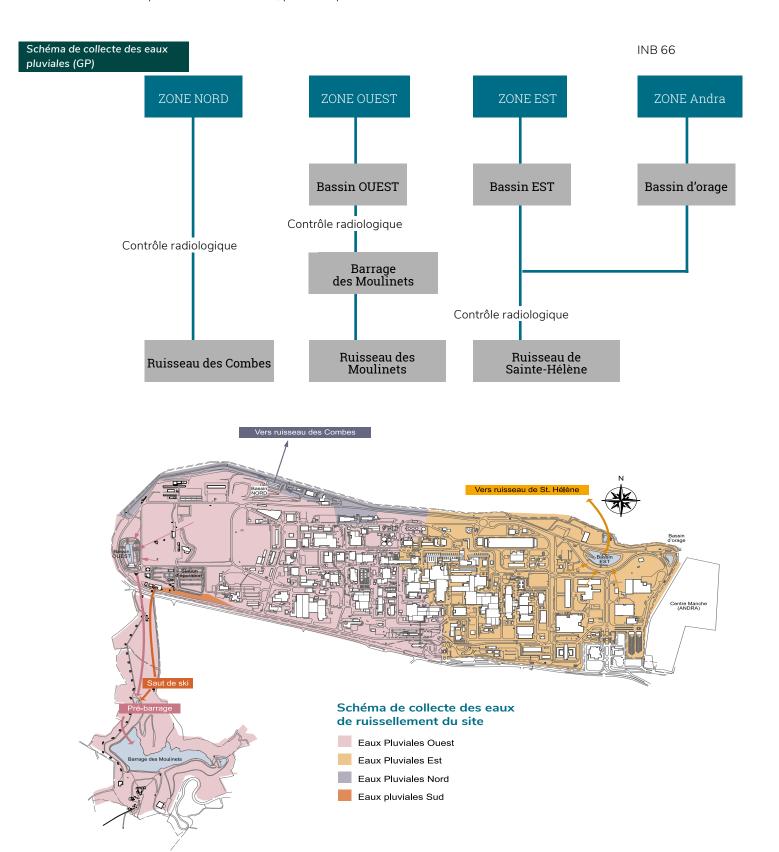
Les eaux pluviales s'écoulent dans plusieurs directions :

- Le bassin versant Est recueille les eaux de la zone Est soit environ 85 hectares correspondant à un débit maximum de 8 m³/s.
- Le bassin versant Ouest recueille les eaux de la zone Ouest soit environ 125 hectares correspondant à un débit maximum de 12 m³/s.
- Le bassin versant Nord, environ 11 hectares, recueille par ruissellement naturel les eaux pluviales de la bordure Nord-Ouest de l'établissement et dont le rejet est déversé dans le ruisseau des Combes.

Les canalisations de collecte des réseaux des bassins Est et Ouest totalisent 52 km. La restitution vers le milieu environnant est effectuée de la façon suivante :

Bassin Est:

- La réserve d'orage est évacuée soit vers le bassin Ouest par l'intermédiaire de deux pompes de reprise, soit gravitairement au ruisseau Sainte-Hélène à un débit compris entre 3 L/s (étiage) et 500 L/s (maximum autorisé).
- La réserve d'étiage (5 000 m³) garantit un débit minimum de 10 m³/h vers le ruisseau Sainte-Hélène. Le volume utile du bassin Est est compris entre 5 000 et 25 000 m³. En aval du bassin, les eaux pluviales du Centre de la Manche de l'Andra (I.N.B. 66) sont contrôlées avant déversement dans le ruisseau de Sainte-Hélène.


Bassin Quest:

- La réserve d'eau brute (20 000 m³) et la réserve incendie (10 000 m³) sont conservées dans le bassin.
- La réserve d'orage (volume excédentaire) est évacuée par surverse au ruisseau des Moulinets via le barrage à un débit compris entre 3 L/s (étiage) et 1 000 L/s.
- À noter qu'une partie du site en aval hydraulique du bassin d'orage ouest est rejetée directement dans le barrage via une installation appelée « Saut de ski ».

Volume annuel déversé m³/an	2021	2022	2023
Ruisseau de la Sainte-Hélène	483 787	458 142	526 083
Ruisseau des Moulinets	1 250 585	1 050 970	1 772 430

Les analyses physico-chimiques sont réalisées à partir d'échantillons moyens journaliers représentatifs du rejet (aliquotes), constitués par des prélèvements effectués à l'aide d'un échantillonneur automatique, elles sont réalisées par le Laboratoire LABEO dépendant du Conseil Départemental de la Manche.

Il est à noter que les mesures de débit, pH et température sont faites en continu.

Résultat des activités des cobenades

Lieu de prélèvement	Année	Activité volumique alpha (Bq/l)	Activité volumique beta (Bq/l)	Activité volumique tritium (Bq/l)	Concentration en potassium (mg/l)
	2021	≤ 0,04	≤ 0,10	≤ 7,91	1,70
GPSS	2022	≤ 0,03	≤ 0,11	≤ 9,58	1,94
	2023	≤ 0,04	≤ 0,14	≤ 9,34	1,84
	2021	≤ 0,04	≤ 0,15	≤ 10,1	2,91
GPNE	2022	≤ 0,04	≤ 0,16	≤ 13,2	2,85
	2023	≤ 0,04	≤ 0,16	≤ 14,3	2,67
	2021	≤ 0,03	≤ 0,15	≤ 6,08	2,89
воо	2022	≤ 0,04	≤ 0,16	≤ 7,62	2,88
	2023	≤ 0,04	≤ 0,17	≤ 7,62	2,67
	2021	≤ 0,08	≤ 0,40	≤ 4,80	11,80
GPNO	2023	≤ 0,08	≤ 0,36	≤ 5,43	10,00
	2022	≤ 0,07	≤ 0,35	≤ 5,53	9,86

Ruisseau des Moulinets Moyenne mensuelle des concentrations instantanées et des flux polluants 24 heures en 2023

Paramètres	Normes	Limites Autorisées (C° / flux)	Моу.	Mini	Maxi
DCO	NF EN 872	120 mg/L	10	10	10
Matières en suspension	NF T 90.101	35 mg/L	2,92	2,00	6,00
Sels Dissous	XP T 90-109	300 kg/24h	1 291,16	132,36	3 820,97
Composés Cycliques Hydroxylés **	NF T 90.115	0,01 kg/24h	0,117	0,010	0,36
Hydrocarbures	NF EN ISO 9377-2	5 mg/L	0,10	0,10	0,10

^{*} sels dissous liés aux embruns (forte pluviométrie sur la période)

Ruisseau de la Sainte-Hélène Moyenne mensuelle des concentrations instantanées et des flux polluants 24 heures en 2023

Paramètres	Normes	Limites Autorisées (C° / flux)	Moy.	Mini	Maxi
DCO	NF EN 872	120 mg/L	13,83	10,00	54,00
Matières en suspension	NF T 90.101	35 mg/L	3,00	2,00	6,00
Sels Dissous	XP T 90-109	300 kg/24h	291,14	66,00	1 375,20
Composés Cycliques Hydroxylés	NF T 90.115	0,01 kg/24h	0,031	0,008	0,138
Hydrocarbures	NF EN ISO 9377-2	5 mg/L	0,10	0,10	0,10

Ruisseau des Combes Moyenne mensuelle des concentrations instantanées et des flux polluants 24 heures en 2023

Paramètres	Normes	Limites Autorisées (C° / flux)	Moy.	Mini	Maxi
DCO	NF EN 872	120 mg/L	18,33	13,00	24,00
Matières en suspension	NF T 90.101	35 mg/L	10,25	3,00	21,00
Hydrocarbures	NF EN ISO 9377-2	5 mg/L	0,10	0,10	0,10

Volumes déversés

Les volumes (débits) des eaux pluviales déversés dans les ruisseaux de Sainte-Hélène et des Moulinets sont mesurés en continu.

Les débits minimaux et maximaux instantanés autorisés ont été respectés.

Volume annuel déversé m³/an	2021	2022	2023
Ruisseau de la Sainte-Hélène	483 787	458 142	526 083
Ruisseau des Moulinets	1 250 58	1 050 585	1 772 430

Hq

Les valeurs limites autorisées par les décisions n°2015-DC-0536 modifiée par la Décision 2022-DC-0724 et n°2015-DC-0535 pour le pH (entre 5,5 et 8,5) n'ont pas été dépassées en 2023.

Méthodes d'analyse

Les méthodes d'analyse utilisées par le LABEO sont celles mentionnées pour le contrôle des eaux usées (voir chapitre précédent) auxquelles il faut rajouter les méthodes suivantes :

- CCH: XPT90-109.
- Sels dissous : méthodes RODIER.

3.2.5. LE BILAN DES DÉCHETS HYDRAZINE ET FORMOL

Les déchets industriels dangereux générés par les activités du site et hors procédé nucléaire font l'objet d'une déclaration annuelle auprès du Ministère de l'Écologie, du Développement Durable, des Transports et du Logement.

Rappelons que l'hydrazine est utilisée dans le procédé lors de la séparation de l'uranium et du plutonium. Le formol est un réactif utilisé par le procédé de concentration des produits de fission.

Ces déchets sont traités par une société autorisée. En 2023, le bilan des déchets industriels d'hydrazine et de formol a été le suivant :

Eau et hydrazine, TBP et NHA: 7,84 tonnes, Eau et formol: 54,02 tonnes. Ces déchets sont traités par une société autorisée.

^{**} la concentration en Composés cycliques hydroxydés est systématiquement inférieure à la limite de quantification ; le flux est dû aux fortes précipitations.

Bilan des mesures de surveillance sur les rejets et l'environnement

La surveillance de la radioactivité dans l'environnement terrestre.

Une station météorologique implantée sur l'établissement permet de connaître à tout moment les principaux paramètres météorologiques, tels que : force et direction du vent à différentes hauteurs, pluviométrie, hygrométrie, ensoleillement, température. Ces informations sont transmises à Météo France. Un bilan des principales données figure en annexe.

Des mesures périodiques sont effectuées dans l'environnement. La nature, le lieu et la périodicité des prélèvements ont été choisis afin que les échantillons soient représentatifs du milieu surveillé et répondent à la décision ASN-2015-DC-0535. Les radioéléments font l'objet d'une recherche spécifique. L'ensemble des analyses est réalisé dans le laboratoire de radioprotection d'Orano sur le site de La Hague.

4.1.1. LA RADIOACTIVITÉ DE L'AIR DANS LES COMMUNES AVOISINANTES DU SITE

Cinq communes (Gréville, Digulleville, Beaumont-Hague, Herqueville et Jobourg) sont équipées d'une station réglementaire de mesure de la radioactivité de l'air.

Deux types de mesures sont effectués par les stations :

Mesures en continu : Ces mesures portent sur la radioactivité alpha et bêta des aérosols, les gaz et le rayonnement gamma. Ces informations sont transmises au travers d'une liaison téléphonique au poste de contrôle de l'environnement (PCE).

Mesures en différé : Des prélèvements d'air sont effectués en continu au travers de pièges qui sont périodiquement prélevés puis analysés en laboratoire. Les mesures portent sur la radioactivité alpha et bêta des aérosols (comptage et spectrométrie alpha), sur l'iode, le tritium et le carbone 14.

La décision n°2015-DC-0536 modifiée par la Décision 2022-DC-0724 fixe, pour certaines périodicités, les limites suivantes d'activités volumiques moyennes de l'air prélevé dans ces stations :

	Limite (Bq/m³)	Périodicité
Tritium	8	Hebdomadaire
Iodes	0,037	Hebdomadaire
Gaz rares	1 850	Mensuelle
Emetteurs alpha artificiels	0,001	Quotidienne
Emetteurs bêta artificiels	0,001	Quotidienne
Carbone 14	1	Mensuelle

Le tableau ci-dessous donne les valeurs moyennes mesurées durant l'année pour les mêmes périodicités (hormis pour le carbone 14 pour lequel les mesures sont effectuées toutes les 2 semaines). Le plutonium fait également l'objet d'une analyse mensuelle : la valeur maximale mesurée par station est également indiquée.

De plus, des mesures du débit d'exposition gamma sont réalisées dans ces stations.

Localisation	AS1	AS2	AS3	AS4	AS5	Fréquence
	GRÉVILLE	DIGULLEVILLE	BEAUMONT	HERQUEVILLE	JOBOURG	
HTO (tritium gazeux) (Bq/m³)	≤ 0,216	≤ 0,259	≤ 0,244	≤ 0,238	≤ 0,234	Hebdomadaire
HTO (eau tritiée) (Bq/m³)	≤ 0,239	≤ 0,276	≤ 0,251	≤ 0,264	≤ 0,233	Hebdomadaire
Iode 129 (Bq/m³)	≤ 0,007	≤ 0,007	≤ 0,006	≤ 0,006	≤ 0,006	Hebdomadaire
Krypton 85 (Bq/m³)	145	450	233	490	172	Mensuelle
α (Bq/m³) ⁽¹⁾	≤ 3,68E-05	≤ 4,61E-05	≤ 4,09E-05	≤ 4,09E-05	≤ 3,57E-05	Quotidienne
β (Bq/m³) ⁽¹⁾	≤ 2,90E-04	≤ 3,07E-04	≤ 2,98E-04	≤ 3,12E-04	≤ 3,11E-04	Quotidienne
Carbone 14 ⁽²⁾ (Bq/m³)	0,047	0,042	0,044	0,061	0,051	Bi-mensuelle
Plutonium 238 (Bq/m³)	≤ 1,323E-07	≤ 1,347E-07	≤ 1,183E-07	≤ 1,255E-07	≤ 1,07E-07	Mensuelle
Plutonium 239+240 (Bq/m³)	≤ 1,412E-07	≤ 1,236E-07	≤ 1,248E-07	≤ 1,269E-07	≤ 1,196E-07	Mensuelle

⁽¹⁾ d'origine naturelle et artificielle le signe ≤ signifie que le résultat de l'analyse se situe en-deçà du seuil de décision.

Moyennes annuelles 2023

	GRÉVILLE	DIGULLEVILLE	BEAUMONT	HERQUEVILLE	JOBOURG
Débit de dose (nSv/h)	128,3	171,7	100,8	142,5	120,0

Remarque:

Le débit d'exposition varie au niveau des stations villages en fonction de l'environnement plus ou moins fourni en pierre de pays (granit).

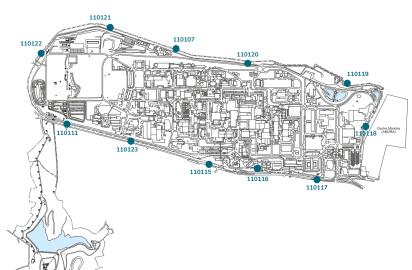


Schéma d'implantation des dosimètres

4.1.2. LE RAYONNEMENT GAMMA À LA CLÔTURE DE L'ÉTABLISSEMENT

Une dosimétrie d'ambiance est effectuée mensuellement à la clôture de l'établissement. Cette mesure exercée en 11 points permet de mesurer le rayonnement Gamma d'origine naturelle (cosmique et tellurique) et éventuellement industrielle, elle est réalisée à l'aide de dosimètres intégrateurs thermoluminescents.

Schéma d'implantation des stations villages

La surveillance terrestre de l'environnement porte sur les voies de transfert possibles de la radioactivité vers l'homme:

- · la voie atmosphérique (l'air),
- · les dépôts (végétaux, terres),
- les eaux (pluie, eaux de consommation, ruisseaux, nappe phréatique),
- les aliments (lait, légumes, viandes ...).

Cinq stations extérieures mesurent la radioactivité de l'air. Elles sont situées dans les villages avoisinants, dans un rayon de 1 à 6 km autour du site, et mesurent en continu la radioactivité des aérosols, du krypton et l'irradiation ambiante. Les données sont centralisées au Poste de Contrôle Environnement (PCE). De plus, les aérosols, l'iode, le tritium, et le carbone 14 sont prélevés en continu et mesurés en différé au laboratoire.

Moyennes annuelles 2023

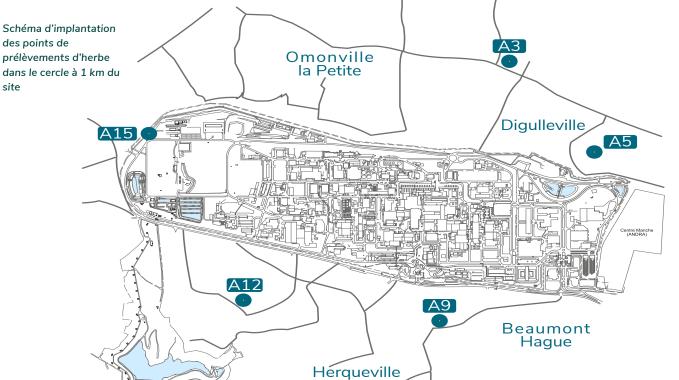
Dosimètre	nSv/h	Localisation
D107	95,8	Clôture Nord (Omonville la Petite)
D111	91,3	Clôture Sud-Ouest – Vallée des Moulinets (Jobourg)
D115	84,3	Station Sud (Herqueville)
D116	93,5	Clôture entrée principale n°1
D117	85,7	Station Poste Principal (Herqueville)
D118	100,5	Station Est (Digulleville)
D119	84,5	Station Bassin Orage Est (Digulleville)
D120	93,5	Station Accès nord (Omonville la Petite)
D121	85,7	Station Nord-Ouest (Omonville la Petite)
D122	85,4	Station Accès Ouest (Jobourg)
D123	94,7	Station Sud-Ouest (Herqueville)

Compte tenu des caractéristiques géologiques et des différences d'altitude, l'exposition naturelle en France varie d'une région à l'autre entre 30 et 220 nSv/h.

4.1.3. L'EAU DE PLUIE

L'eau de pluie est un bon indicateur de l'activité des aérosols dans l'air. La pluie, en tombant, lessive l'air et entraîne les aérosols et les poussières. Elle contribue également au rabattement du tritium gazeux sous forme d'eau tritiée. Des mesures sont effectuées de façon hebdomadaire en deux points de La Hague :

- Station météo de l'établissement,
- Station de Gréville.


Moyennes annuelles 2023

Bq/L	Station météo du site	Station de Gréville
Tritium	≤ 8,03	≤ 4,22
Alpha global	≤ 0,04	≤ 0,06
Bêta global	≤ 0,13	≤ 0,18

Le signe ≤ signifie que le résultat de l'analyse se situe en-deçà du seuil de décision.

Des mesures complémentaires en spectrométrie Gamma sont effectuées lorsque le résultat du comptage bêta est au-dessus seuil de décision.

4.1.4. LES VÉGÉTAUX

La mesure de la radioactivité des végétaux permet, comme pour la couche superficielle des terres d'évaluer les dépôts des rejets atmosphériques. De plus, les végétaux des pâturages servent à l'alimentation des animaux ; ainsi cette mesure permet d'évaluer les transferts de radioactivité vers le lait ou la viande.

Ces prélèvements réglementaires sont mensuellement effectués en 5 points à 1 km du site, trimestriellement sur 5 autres points (4 à 2 km et 1 à 10 km).

Moyennes annuelles 2023

Bq/kg frais	Monts Eperons	Pont- Durand	Les Acres	Ferme de Calais	Nord- ouest	Н	erbes cercle	2 km		Herbes référence cercle 10 km
	A3	A5	A9	A12	A15	B4	B8	B14	B18	Ј8
⁴⁰ K	148	124	175	173	100	149	153	170	138	150
⁶⁰ Co	≤ 0,10	≤ 0,11	≤ 0,13	≤ 0,11	≤ 0,16	≤ 0,11	≤ 0,09	≤ 0,10	≤ 0,09	≤ 0,10
106RuRh	≤ 1,46	≤ 1,50	≤ 1,71	≤ 1,52	≤ 2,20	≤ 2,20	≤ 1,19	≤ 1,35	≤ 1,22	≤ 1,35
¹²⁵ Sb	≤ 0,20	≤ 0,21	≤ 0,24	≤ 0,20	≤ 0,30	≤ 0,22	≤ 0,16	≤ 0,17	≤ 0,18	≤ 0,18
¹³⁴ Cs	≤ 0,07	≤ 0,08	≤ 0,09	≤ 0,08	≤ 0,11	≤ 0,08	≤ 0,06	≤ 0,07	≤ 0,06	≤ 0,07
¹³⁷ Cs	≤ 0,09	≤ 0,09	≤ 0,10	≤ 0,13	≤ 0,49	≤ 0,09	≤ 0,09	≤ 0,08	≤ 0,07	≤ 0,08
¹²⁹ I	≤ 0,38	≤ 0,59	≤ 0,29	≤ 0,38	≤ 0,11	≤ 0,36	≤ 0,09	≤ 0,12	≤ 0,05	≤ 0,05
¹⁴ C*	40,33	50,50	35,67	46,75	29,14	31,75	15,75	19,00	15,50	15,25
³H lié	1,53	2,23	1,47	1,55	2,54	1,25	1,58	1,29	0,90	1,27
³H libre	7,35	NM	7,5	NM	NM	NM	NM	NM	NM	NM
Rapport poids sec/frais	0,19	0,21	0,23	0,19	0,29	0,21	0,16	0,18	0,18	0,18

^{*} Carbone 14 d'origine naturelle et artificielle

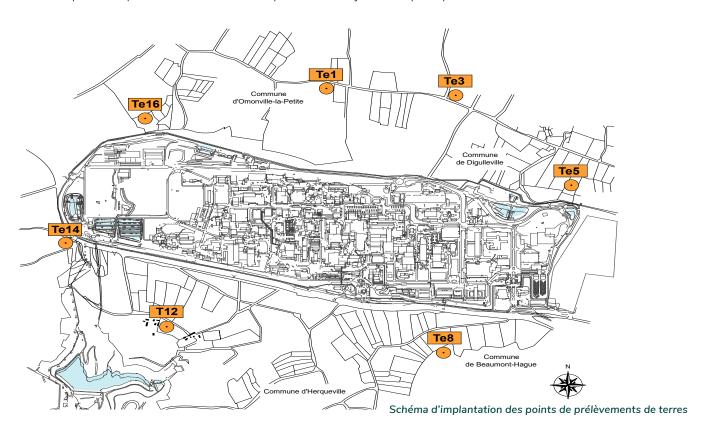
Le signe ≤ signifie que le résultat de l'analyse se situe en-deçà du seuil de décision.

NM : non mesuré

Analyses

Avant mesure, les échantillons sont séchés en étuve à température constante puis broyés et conditionnés. La spectrométrie gamma (137Cs, 106RuRh, 241Am, 125Sb, 60Co ...) est réalisée sur un détecteur Germanium Hyperpur. La mesure de l'iode 129 est faite par spectrométrie Gamma après une fusion alcaline de l'échantillon sec puis un traitement chimique. Le carbone 14 est mesuré par scintillation liquide après combustion et piégeage du gaz carbonique. De plus, il est effectué une campagne annuelle portant sur la mesure du curium 244, de l'américium 241 et des isotopes alpha du plutonium.

Bq/kg frais	Monts Eperons	Pont- Durand	Les Acres	Ferme de Calais	Nord- ouest	Herbes cercle 2 km		Herbes référence cercle 10 km		
	АЗ	A5	A9	A12	A15	B4	B8	B14	B18	J8
²⁴¹ Am	≤ 0,076	≤ 0,081	≤ 0,084	≤ 0,074	≤ 0,103	≤ 0,081	≤ 0,059	≤ 0,062	≤ 0,065	≤ 0,064
²³⁸ Pu	≤ 0,006	≤ 0,004	≤ 0,005	≤ 0,004	≤ 0,005	≤ 0,002	≤ 0,003	≤ 0,002	≤ 0,006	≤ 0,004
²³⁹ Pu+ ²⁴⁰ Pu	≤ 0,003	≤ 0,007	≤ 0,005	≤ 0,004	≤ 0,005	≤ 0,004	≤ 0,006	≤ 0,002	≤ 0,008	≤ 0,003
²⁴⁴ Cm	≤ 0,003	≤ 0,009	≤ 0,004	≤ 0,003	≤ 0,005	≤ 0,002	≤ 0,002	≤ 0,003	≤ 0,003	≤ 0,003
Rapport poids sec/frais	0,19	0,22	0,21	0,22	0,29	0,22	0,22	0,24	0,18	0,18


Le signe ≤ signifie que le résultat de l'analyse se situe en-deçà du seuil de décision.

Des points de prélèvements d'herbe jusqu'à 10 km du site.

4.1.5. LES TERRES

Des prélèvements de terre sont effectués en 7 points à environ 1 km du centre du site. Ces prélèvements trimestriels de la couche superficielle permettent d'évaluer les dépôts dus aux rejets atmosphériques.

Moyennes annuelles 2023

	(Tel)	(Te3)	(Te5)	(Te8)	(Te12)	(Te14)	(Te16)
Bq/kg frais	Carrefour des Delles	Monts- Esperons	Pont- Durand	Les Marettes	Le Mesnil	Le Platron	Les Landes
⁴⁰ K	467,5	462,5	495,0	430,0	467,5	427,5	437,5
⁶⁰ Co	≤ 0,69	≤ 0,80	≤ 0,74	≤ 0,69	≤ 0,81	≤ 0,68	≤ 0,79
¹⁰⁶ RuRh	≤ 12,40	≤ 12,75	≤ 13,25	≤ 12,00	≤ 12,50	≤ 12,75	≤ 14,00
¹²⁵ Sb	≤ 1,75	≤ 1,88	≤ 1,90	≤ 1,95	≤ 1,88	≤ 1,83	≤ 2,13
¹³⁴ Cs	≤ 0,63	≤ 0,63	≤ 0,64	≤ 0,57	≤ 0,60	≤ 0,63	≤ 0,69
¹³⁷ Cs	3,30	2,95	2,65	18,75	9,55	7,58	28,18
¹⁴ C*	NM	15,0	NM	16,0	NM	NM	NM
PS/PF**	0,78	0,79	0,81	0,78	0,75	0,80	0,82

^{*} Carbone 14 d'origine naturelle et artificielle ** Rapport du poids sec sur poids frais Le signe ≤ signifie que le résultat de l'analyse se situe en-deçà du seuil de décision. NM : non mesuré

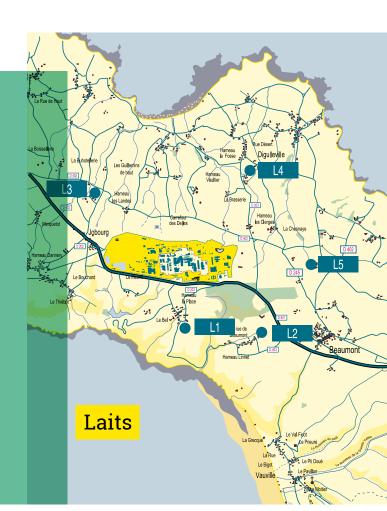
Commentaires:

Le marquage en césium 137 est dû en partie à l'incident du silo 130 en janvier 1981, ainsi qu'aux tirs atmosphériques d'armes nucléaires dans les années 1950 à 1960, et des retombées de Tchernobyl en 1986.

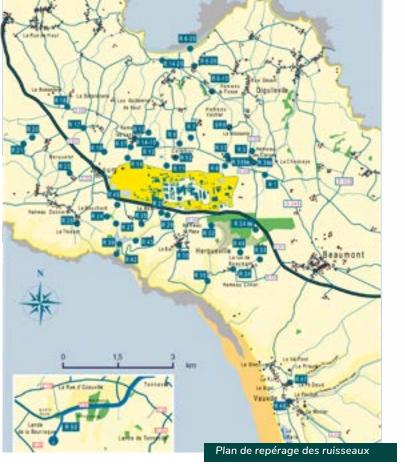
4.1.6. LE LAIT

Des prélèvements dans des fermes avoisinantes de l'établissement sont effectués chaque mois. Le lait est un élément important de l'alimentation des enfants, aussi il fait l'objet d'une surveillance régulière.

	(L1)	(L2)	(L3)	(L4)	(L5)	(L9)
Bq/l	Herqueville	La Rue de Beaumont	Hameau Ricard Jobourg	Digulleville	Hameau Galles Beaumont	Laiterie de Sottevast site de référence ⁽¹⁾
⁴⁰ K	52,9	47,3	48,1	52,3	49,6	51,3
⁶⁰ Co	≤ 0,043	≤ 0,043	≤ 0,042	≤ 0,042	≤ 0,043	≤ 0,043
106RuRh	≤ 0,693	≤ 0,685	≤ 0,689	≤ 0,703	≤ 0,703	≤ 0,683
¹²⁵ Sb	≤ 0,109	≤ 0,108	≤ 0,107	≤ 0,108	≤ 0,108	≤ 0,110
¹³⁴ Cs	≤ 0,035	≤ 0,035	≤ 0,035	≤ 0,035	≤ 0,035	≤ 0,035
¹³⁷ Cs	≤ 0,042	≤ 0,041	≤ 0,042	≤ 0,042	≤ 0,041	≤ 0,042
¹²⁹ I	≤ 0,027	≤ 0,020	≤ 0,021	≤ 0,026	≤ 0,023	≤ 0,015
¹³¹ I	≤ 0,052	≤ 0,057	≤ 0,064	≤ 0,081	≤ 0,092	≤ 0,090
Tritium	≤ 5,69	≤ 4,93	≤ 4,47	≤ 4,99	≤ 4,22	≤ 4,27
¹⁴ C*	28,7	17,1	18,9	23,8	18,1	16,0
90Sr	0,048	0,056	0,044	0,027	0,032	0,024


^{*} Carbone 14 d'origine essentiellement naturelle.

LE SAVIEZ-VOUS?


Le principal radioélément mesuré est le potassium 40 (40K) d'origine naturelle.

Concernant le 90Sr, les résultats observés sont comparables à ceux mesurés en France. Ils proviennent des retombées des essais atmosphériques d'armes atomiques 50 et 60. Analyses:

L'échantillon est conservé au réfrigérateur après ajout d'un conservateur. La spectrométrie gamma (137Cs) est faite sur un détecteur Germanium Hyperpur. Le tritium (3H) est mesuré par scintillation liquide après évaporation et mélange avec un produit scintillateur. Pour la mesure de l'iode 129 (129I), l'échantillon fait l'objet d'une préparation chimique (fixation de l'iode sur résine, réextraction et séparation chimique) avant d'être mesuré par spectrométrie gamma. La mesure du carbone 14 (14C) par scintillation liquide se fait après lyophilisation, combustion, et piégeage du gaz carbonique. Le dosage du strontium 90 (90Sr) est effectué par comptage bêta après calcination du lait, mise en solution des cendres et extraction chimique de l'Yttrium.

⁽¹⁾ La laiterie est située à environ 15 km au sud de Cherbourg.

4.1.7. LES EAUX DE RUISSEAUX

Un contrôle radiologique des eaux est effectué lors de leur déversement dans les ruisseaux des Moulinets, des Combes, et de la Sainte-Hélène. Ces 3 ruisseaux sont les exutoires des eaux pluviales de l'établissement ainsi que des eaux usées (Ruisseau des Moulinets). De plus une analyse hebdomadaire est effectuée sur l'eau de 4 ruisseaux autour du site (Ruisseau des Moulinets, de la Sainte-Hélène, des Combes, et des Landes). Ces mesures sont complétées par une spectrométrie gamma mensuelle ainsi qu'une recherche du 90Sr.

Valeurs moyennes 2023

Bq/l	Ste Hélène (R6)	Moulinets (R42)	Landes (R14)	Combes (R12)
α	≤ 0,04	≤ 0,04	≤ 0,05	≤ 0,05
β	0,17	0,18	0,21	0,2
Tritium	16,0	7,6	6,32	5,2
⁶⁰ Co	≤ 0,18	≤ 0,18	≤ 0,16	≤ 0,18
¹²⁵ Sb	≤ 0,36	≤ 0,37	≤ 0,36	≤ 0,36
¹³⁴ Cs	≤ 0,13	≤ 0,13	≤ 0,13	≤ 0,13
¹³⁷ Cs	≤ 0,15	≤ 0,16	≤ 0,15	≤ 0,15
106RuRh	≤ 2,52	≤ 2,60	≤ 2,49	≤ 2,63
90Sr	≤ 0,06	≤ 0,06	0,07	≤ 0,05
¹²⁹ I	≤ 0,10	≤ 0,10	≤ 0,10	≤ 0,10
²⁴¹ Am	≤ 0,13	≤ 0,14	≤ 0,14	≤ 0,13

D'autres sources et ruisseaux du plateau de La Hague font l'objet d'une surveillance radiologique semestrielle.

Moyennes annuelles 2023

	(R1)	(R3)	(R8)	(R11)	(R16)	(R17)	(R18)	(R22)
Bq/l	Les Roteures	Le Grand Bel	Les Delles	Le Marais Roger	La Croix- Ricard	La Buhotellerie	La vallée des Moulins	Rivière des Moulins
α global	≤ 0,03	≤ 0,03	≤ 0,04	≤ 0,06	≤ 0,11	≤ 0,04	≤ 0,09	≤ 0,05
β global	0,10	0,10	0,12	0,22	0,25	0,43	0,18	0,17
Tritium	≤ 4,35	180,00	7,10	≤ 4,20	≤ 5,00	6,25	≤ 4,35	4,60

	(R24)	(R28)	(R29)	(R30)	(R32)	(R33)	(R38)
Bq/l	Le Mont des Moulins	La Source froide	La froide Fontaine	La source du Val	Les Taillis	Le Hamlet	La ferme de Calais
α global	0,04	≤ 0,03	≤ 0,09	0,056	0,075	≤ 0,04	≤ 0,04
β global	0,13	0,15	0,18	0,44	0,31	0,10	0,23
Tritium	4,50	8,00	5,65	4,15	11,50	4,35	7,20

On observe un marquage en tritium dans l'eau des ruisseaux de Sainte-Hélène et du Grand Bel. Ce marquage est dû au relâchement de tritium dans les années 70 par le centre de stockage de déchets radioactifs voisin (CSM - Andra).

Il existe également un marquage dans le ruisseau des Landes. Ce marquage est dû à une présence de radioactivité (bêta) dans la nappe phréatique au Nord-Ouest de l'établissement, lié essentiellement à un ancien stockage de déchets dans des fosses bétonnées dans les années 1970. Ces déchets ont été évacués depuis la fin des années 1990 (voir paragraphe «ruisseau des Landes» - 4.1.10).

Landes» - 4.1.10).
Les activités alpha et bêta sont mesurées sur un compteur à bas bruit de fond après évaporation de 300 ml de l'échantillon.
La mesure du tritium s'effectue par une mesure bêta en scintillation liquide.

Ces techniques de mesure sont communes pour l'analyse de l'eau des ruisseaux, des eaux destinées à la consommation humaine et des eaux de la nappe phréatique.

4.1.8. LES SÉDIMENTS DE RUISSEAUX

Un contrôle trimestriel par spectrométrie Gamma des sédiments de 4 ruisseaux est effectué (Sainte-Hélène, Moulinets, Combes et Landes), ainsi qu'une mesure des émetteurs alpha du plutonium (Pu 238 - Pu 239 + 240).

Moyennes annuelles 2023

Bq/kg frais	Abreuvoir Ste- Hélène	Les Combes	Les Landes	Les Moulinets
⁴⁰ K	238	435	328	350
⁶⁰ Co	≤ 0,11	≤ 0,16	≤ 0,16	≤ 0,22
106RuRh	≤ 1,73	≤ 2,43	≤ 2,33	≤ 3,23
¹²⁵ Sb	≤ 0,25	≤ 0,35	≤ 0,32	≤ 0,47
¹²⁹ I	2,10	≤ 0,32	≤ 0,23	1,38
¹³⁴ Cs	≤ 0,09	≤ 0,12	≤ 0,12	≤ 0,16
¹³⁷ Cs	5,55	1,13	1,43	17,25
²⁴¹ Am	≤ 0,20	≤ 0,25	≤ 0,19	0,39
²³⁸ Pu	0,07	≤ 0,05	≤ 0,03	0,07
²³⁹ Pu + ²⁴⁰ Pu	0,13	≤ 0,08	0,05	0,13
PS/PF*	0,43	0,73	0,61	0,67

On observe un léger marquage des sédiments des ruisseaux des Landes, de Sainte-Hélène et des Moulinets.

Le marquage observé dans les ruisseaux est dû au drainage des eaux pluviales légèrement marquées par d'anciens dépôts au sol (essais d'armes atomiques, accident de Tchernobyl, incendie du silo 130) et à un phénomène de sédimentation lorsque les eaux pluviales sont déversées dans ces ruisseaux.

4.1.9. LES VÉGÉTAUX DES RUISSEAUX

Il est effectué un contrôle trimestriel des végétaux aquatiques dans 3 ruisseaux.

Moyennes annuelles 2023

Bq/kg frais	Sainte- Hélène	Combes	Landes
³H lié	0,70	0,34	0,33
⁴⁰ K	103	61	84
⁶⁰ Co	≤ 0,07	≤ 0,06	≤ 0,05
¹⁰⁶ RuRh	≤ 1,23	≤ 0,96	≤ 0,81
¹²⁵ Sb	≤ 0,17	≤ 0,12	≤ 0,11
¹²⁹ I	≤ 3,43	0,17	≤ 0,05
¹³⁴ Cs	≤ 0,06	≤ 0,05	≤ 0,04
¹³⁷ Cs	2,60	0,05	0,71
²⁴¹ Am	0,16	≤ 0,05	0,05
PS/PF*	0,19	0,08	0,13

Les marquages observés pour les végétaux du ruisseau de Sainte-Hélène ont les mêmes origines que celles observées dans les sédiments de ce ruisseau (voir paragraphe précédent). Pour ce qui concerne le ruisseau des Landes, voir le paragraphe suivant.

4.1.10. RUISSEAU DES LANDES

Marquage historique par des radionucléides dans la zone Nord-Ouest du site de la Hague.

Le ru des Landes est une résurgence de la nappe phréatique en amont du ruisseau des Landes sur la commune d'Omonville-la-Petite située au Nord-Ouest du site industriel Orano la Haque.

Un marquage dans cette zone est connu de l'exploitant, de l'autorité de sûreté, de l'IRSN et de la CLI depuis de nombreuses années et fait l'objet d'une surveillance prise en compte réglementairement dans le programme de surveillance annuelle de l'établissement.

La parcelle concernée est essentiellement constituée d'une saulaie marécageuse et tourbeuse, surplombée au sud d'une lande à ajoncs.

Orano a décidé début 2017 de retirer les terres les plus marquées au niveau de la résurgence à l'origine du ru des Landes, de rabattre la nappe en amont au niveau du site au moyen de 2 forages de façon à éviter tout nouvel apport de radionucléides artificiels à l'origine de ce marquage et de mettre en œuvre un programme de surveillance renforcé complémentaire. Ces dispositions ont notamment pour objectif de garantir et confirmer l'absence d'évolution du marquage dans la zone.

Orano la Hague a reçu l'autorisation de l'ASN en septembre 2022 pour reprendre les terres marquées de la zone humide du ruisseau des Landes.

Ces travaux ont été réalisés durant le dernier trimestre 2023 (reprise d'une couche superficielle de terre). Des travaux complémentaires de réhabilitation de la zone sont prévus en 2024 (restauration de la zone humide et réensemencement par des matières organiques et végétales).

La surveillance complémentaire mise en œuvre trimestriellement permet de surveiller des terres, sédiments, herbes, eaux et végétaux aquatiques. Pour l'année 2023, les résultats sont présentés ci-dessous.

Terres (Bq/kg frais)

	106 RuRh	125 Sb	134 Cs	137 Cs	241 Am	60 Co
min	≤ 2,62	≤ 0,42	≤ 0,14	2,42	≤ 0,26	≤ 0,15
max	≤ 11,3	≤ 1,75	≤ 0,58	61,00	≤ 1,15	≤ 0,67
moyenne	≤ 4,64	≤ 0,75	≤ 0,24	15,83	≤ 0,61	≤ 0,28

	106 RuRh	125 Sb	129 I	134 Cs	137 Cs	238 Pu	239/ 240 Pu	241 Am		90 Sr
min	≤ 0,86	≤ 0,12	0,06	≤ 0,04	1,05	0,09	2,31	2,11	≤ 0,05	10,4
max	≤ 2,48	≤ 0,38	2,53	≤ 0,12	4,09	2,17	30,70	18,90	≤ 0,52	92,60
moy.	≤ 1,44	≤ 0,21	0,75	≤ 0,07	2,57	0,77	10,45	8,08	≤ 0,14	37,26

Sédiments (Bq/kg frais) Herbes (Bq/kg frais)

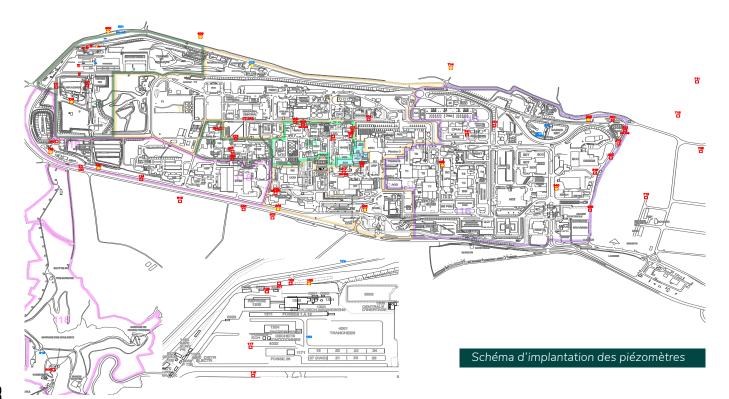
	106 RuRh		129 I	134 Cs		241 Am	60 Co	90 Sr
min	≤ 1,00	≤ 0,13	≤ 0,04	≤ 0,05	0,11	≤ 0,05	≤ 0,07	0,81
max	≤ 2,37	≤ 0,31	≤ 0,10	≤ 0,12	0,38	≤ 0,11	≤ 0,18	35,00
moy.	≤ 1,50	≤ 0,20	≤ 0,07	≤ 0,07	0,22	≤ 0,07	≤ 0,11	13,70

Eaux (Bq/L)

	Alpha	Bêta	Tritium	Am241	Co60	Cs134	Cs137	Pu 239/240	Pu238	RuRh106	Sr90
min	≤ 0,06	≤ 1,09	4,28	≤ 0,10	≤ 0,14	≤ 0,09	≤ 0,13	≤ 0,0008	≤ 0,0006	≤ 2,05	0,39
max	≤ 0,16	≤ 1,79	9,20	≤ 0,73	≤ 0,16	≤ 0,12	≤ 0,16	≤ 0,0013	≤ 0,0010	≤ 2,88	0,43
moyenne	≤ 0,10	≤ 1,49	6,30	≤ 0,41	≤ 0,15	≤ 0,11	≤ 0,15	≤ 0,0011	≤ 0,0008	≤ 2,47	0,41

Végétaux aquatiques (Bq/kg frais)

	106RuRh	125Sb	129I	134Cs	137Cs	241Am	60Co
min	≤ 0,74	≤ 0,09	0,04	≤ 0,03	0,18	0,52	≤ 0,05
max	≤ 0,74	≤ 0,09	0,04	≤ 0,03	0,18	0,52	≤ 0,05
moyenne	≤ 0,74	≤ 0,09	0,04	≤ 0,03	0,18	0,52	≤ 0,05


4.1.11. LA NAPPE PHRÉATIQUE

La nappe phréatique se comporte comme un réservoir d'eau. Sa hauteur varie en fonction des précipitations et de la nature hydrogéologique du sous-sol. Elle alimente l'ensemble des ruisseaux qui prennent leur source autour du site et constitue un maillon essentiel dans les transferts hydrogéologiques.

Aussi fait-elle l'objet d'une surveillance particulière grâce à un réseau de piézomètres dans lesquels sont effectués mensuellement des prélèvements pour analyses. Les piézomètres sont implantés sur le site et à proximité.

Il est à noter deux secteurs de la nappe phréatique particulièrement marqués par des radioéléments :

- La zone Nord-Ouest de l'établissement marquée en radioéléments bêta à hauteur de quelques becquerels par litre. Ce marquage est lié essentiellement à l'entreposage de déchets dans des fosses bétonnées. Ces déchets ont été retirés à la fin des années 1990.
- La zone Est de l'établissement marquée en tritium.
 Ce marquage est dû au relâchement de tritium dans les années 70 par le centre de stockage de déchets radioactifs voisin (CSM-Andra).

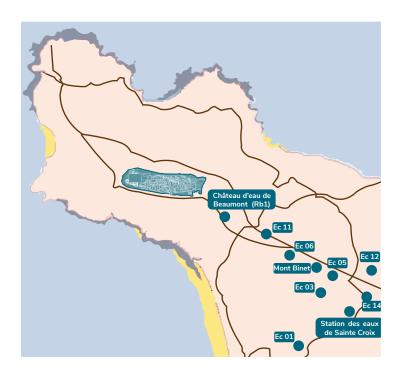
4.1.12. L'EAU DESTINÉE À LA CONSOMMATION

La commune nouvelle de La Hague est constituée de 19 communes.

Le service public de l'eau potable est assuré depuis 1984 par cette commune qui assure la production à partir de ressources souterraines. Elle assure :

- la production,
- le traitement de l'eau brute à la station du Mont Binet,
- la distribution aux abonnés (dont Orano) des 19 communes.

La commune nouvelle de La Hague dispose de ressources en eau potable à partir du captage de Clairefontaine (captage des eaux de Sainte-Croix) et d'une douzaine de forages représentés ci-après


Des contrôles sont effectués mensuellement sur 3 stations et trimestriellement sur 9 forages.

Remarque: Le forage Ec 03 n'est plus utilisé.

Moyennes annuelles 2023

Bq/l	Château d'eau de Beaumont	Mont Binet	S ^{te} Croix-Hague	Le Vinnebus For 01	Les Cinq Chemins For 05	Les Hougues For 06	Le Grand Hameau For 24
α	0,060	0,067	0,063	0,072	0,112	0,138	0,033
β	0,136	0,139	0,164	0,173	0,160	0,178	0,098
Tritiun	1 ≤ 4,27	≤ 4,23	≤ 4,53	≤ 6,65	≤ 4,28	≤ 4,23	6,87
Bq/l	Le Bacchus For 12	Sainte-Croix Hague For 14	Hameau Fabien For 11	Le Houguet For 18	La Croix aux Dames For 21	Le Maupas For 17	
<mark>Bq/l</mark> α		Hague	Fabien	Houguet	Dames	Maupas	
	For 12	Hague For 14	Fabien For 11	Houguet For 18	Dames For 21	Maupas For 17	

Le signe ≤ signifie que le résultat de l'analyse se situe en-deçà du seuil de décision.

Moyennes annuelles 2023

			Activité volumique (Bq/l)
Piézomètre		alpha	bêta tritium
PZ101	≤ 0,08	2,06	≤ 5,30
PZ102	0,18	0,26	≤ 6,82
PZ103	0,27	0,71	≤ 7,06
PZ106	≤ 0,12	0,87	≤ 5,06
PZ110	≤ 0,04	0,93	≤ 5,03
PZ111	≤ 0,11	≤ 0,26	≤ 7,19
PZ112	≤ 0,05	0,15	6,21
PZ113	≤ 0,05	≤ 0,13	11,00
PZ114	≤ 0,03	≤ 0,11	≤ 6,58
PZ115	≤ 0,05	≤ 0,08	10,50
PZ118	≤ 0,03	0,19	6,93
PZ120	≤ 0,07	0,19	9,97
PZ124	0,24	28,30	≤ 7,54
PZ140	≤ 0,08	≤ 0,19	5,71
PZ146	≤ 0,04	≤ 0,10	≤ 4,40
PZ147	0,11	0,23	≤ 4,95
PZ149	0,07	0,20	≤ 6,10
PZ150	≤ 0,05	0,11	≤ 4,22
PZ152	≤ 0,09	≤ 0,20	5,12
PZ153	≤ 0,03	≤ 0,08	≤ 5,45
PZ157	0,10	0,20	12,50
PZ160	≤ 0,07	0,20	18,20
PZ161	≤ 0,12	2,48	≤ 7,07
PZ162	0,10	≤ 0,22	≤ 6,97
PZ171	≤ 0,10	1,15	≤ 4,89
PZ174	0,31	0,60	≤ 7,92
PZ177	≤ 0,06	≤ 0,21	≤ 5,78
PZ180	≤ 0,06	0,23	≤ 4,55
PZ190	0,08	0,70	≤ 4,82

			Activité volumique (Bq/l
Piézomètre		alpha	bêta tritium
PZ204	≤ 0,04	≤ 0,13	≤ 7,16
PZ205	≤ 0,11	≤ 0,22	≤ 6,90
PZ206	≤ 0,05	≤ 0,13	≤ 5,65
PZ211	≤ 0,10	0,27	≤ 5,63
PZ212	≤ 0,14	≤ 0,27	≤ 6,73
PZ217	≤ 0,04	≤ 0,16	≤ 5,98
PZ223	≤ 0,03	≤ 0,10	≤ 6,43
PZ225	0,41	0,58	7,91
PZ232	≤ 0,04	≤ 0,14	≤ 5,67
PZ242	0,10	0,34	≤ 10,00
PZ246	≤ 0,07	0,20	≤ 5,07
PZ249	≤ 0,03	≤ 0,09	≤ 9,25
PZ254	≤ 0,04	≤ 0,10	7,38
PZ257	≤ 0,04	≤ 0,12	9,78
PZ259	0,13	0,31	≤ 5,03
PZ262	≤ 0,08	0,20	≤ 6,53
PZ266	0,14	0,28	6,50
PZ270	≤ 0,03	≤ 0,10	17,20
PZ275	0,05	0,16	≤ 5,22
PZ276	0,22	0,30	7,17
PZ279	≤ 0,05	≤ 0,10	1000,00
PZ280	≤ 0,22	6,97	86,10
PZ285	0,10	0,51	29,80
PZ286	≤ 0,04	≤ 0,09	≤ 5,10
PZ288	≤ 0,12	≤ 0,15	14,20
PZ290	≤ 0,05	≤ 0,11	19,80
PZ292	≤ 0,03	≤ 0,40	629,00
PZ293	≤ 0,04	0,29	407,00
PZ296	0,16	0,32	11,00

			Activité volumique (Bq/l)
Piézomètre		alpha	bêta tritium
PZ297	0,09	0,22	8,50
PZ299	≤ 0,06	6,20	12,70
PZ2A2	0,21	0,45	5,85
PZ2A3	≤ 0,04	≤ 0,09	7,56
PZ2A6	0,15	0,32	5,62
PZ2A7	0,05	0,78	5,92
PZ2A9	≤ 0,10	11,30	13,00
PZ2B1	≤ 0,03	0,38	6,88
PZ2B2	≤ 0,11	8,45	7,16
PZ2B3	0,09	0,22	≤ 6,84
PZ310	≤ 0,05	≤ 0,10	≤ 6,78
PZ311	≤ 0,06	≤ 0,16	≤ 6,16
PZ320	≤ 0,05	≤ 0,11	14,20
PZ321	≤ 0,04	≤ 0,12	151,00
PZ322	≤ 0,05	≤ 0,13	24,70
PZ324	≤ 0,03	≤ 0,10	19,20
PZ326	≤ 0,05	≤ 0,13	171,00
PZ329	≤ 0,03	0,17	≤ 8,47
PZ332	≤ 0,10	0,33	18,50
PZ340	≤ 0,09	≤ 0,28	57,80
PZ345	≤ 0,05	≤ 0,14	15,90
PZ346	≤ 0,04	≤ 0,09	≤ 6,08
PZ348	0,20	0,60	≤ 7,38
PZ355	0,26	0,40	≤ 4,38
PZ358	0,15	0,23	3260,00
PZ359	≤ 0,12	0,31	9,19
PZ361	≤ 0,10	≤ 0,24	22,80
PZ365	≤ 0,06	≤ 0,12	14,80
PZ371	0,23	0,31	173,00

			Activité volumique (Bq/l)
Piézomètre		alpha	bêta tritium
PZ372	0,17	0,38	122,00
PZ373	0,10	≤ 0,22	3360,00
PZ379	≤ 0,04	≤ 0,10	48,90
PZ380	≤ 0,08	≤ 0,17	15,80
PZ500	≤ 0,10	4,35	≤ 5,90
PZ501	≤ 0,06	0,25	≤ 5,00
PZ506	0,09	0,23	≤ 5,07
PZ600	≤ 0,05	0,23	≤ 5,61
PZ601	≤ 0,06	0,23	≤ 4,50
PZ700	≤ 0,04	≤ 0,11	172,00
PZ705	≤ 0,05	≤ 0,13	6,65
PZ711	0,19	0,30	9,08
PZ712	≤ 0,08	≤ 0,15	≤ 7,73
PZ713	≤ 0,04	0,14	13,50
PZ714	≤ 0,05	≤ 0,11	8,93
PZ715	≤ 0,05	≤ 0,14	81,50
PZ800	≤ 0,04	≤ 0,09	6,18
PZ801	≤ 0,08	≤ 0,24	7,84
PZ802	≤ 0,04	≤ 0,09	14,00
PZ804	≤ 0,04	≤ 0,13	≤ 4,67
PZ900	≤ 0,04	≤ 0,12	≤ 4,25
PZ809	≤ 0,08	0,15	≤ 5,47
PZ908	≤ 0,08	0,13	≤ 4,35
PZ913	≤ 0,09	0,24	≤ 4,62
PZ915	0,12	0,20	≤ 7,55
PZ916	≤ 0,04	0,12	≤ 5,80
PZ917	≤ 0,07	0,17	7,75
PZ918	0,21	0,41	≤ 6,69
PZ919	≤ 0,22	21,00	13,60

4.1.13. LES PRODUCTIONS AGRICOLES

Les campagnes portent sur différents légumes, viandes et aliments divers destinés à la consommation humaine. Ces mesures permettent de vérifier la cohérence des modèles de calculs d'impact des rejets d'effluents gazeux et liquides.

Il est à noter que les résultats de mesure du 14C incluent le carbone 14 d'origine naturelle et artificielle.

Moyennes annuelles 2023 Légumes & aliments divers

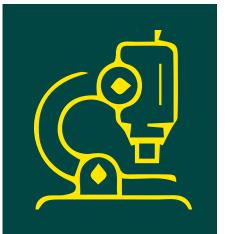
Bq/kg frais		Miel	Persil	Poireaux	Choux	Champignons
	Herqueville	Vauville	Herqueville	Herqueville	Herqueville	Digulleville
⁴⁰ K	170	64	94	130	97	130
⁶⁰ Co	≤ 0,14	≤ 0,15	≤ 0,03	≤ 0,05	≤ 0,04	≤ 0,05
106RuRh	≤ 2,50	≤ 2,30	≤ 0,40	≤ 0,71	≤ 0,42	≤ 0,71
¹²⁵ Sb	≤ 0,32	≤ 0,31	≤ 0,06	≤ 0,09	≤ 0,05	≤ 0,09
¹³⁴ Cs	≤ 0,12	≤ 0,11	≤ 0,02	≤ 0,03	≤ 0,02	≤ 0,04
¹³⁷ Cs	≤ 0,13	0,13	≤ 0,02	≤ 0,04	≤ 0,02	≤ 0,46
¹²⁹ I	0,10	0,12	0,03	0,04	0,02	0,06
¹⁴ C	33,00	62,00	7,10	6,60	6,20	24,00
²⁴¹ Am	≤ 0,12	≤ 0,14	≤ 0,03	≤ 0,04	≤ 0,02	≤ 0,04
³H lié	3,10	1,40	0,42	0,89	0,36	2,10
³H libre	1,80	NM	NM	NM	2,60	NM
PS/PF*	0,38	NM	0,08	0,08	0,06	0,12

NM : non mesuré

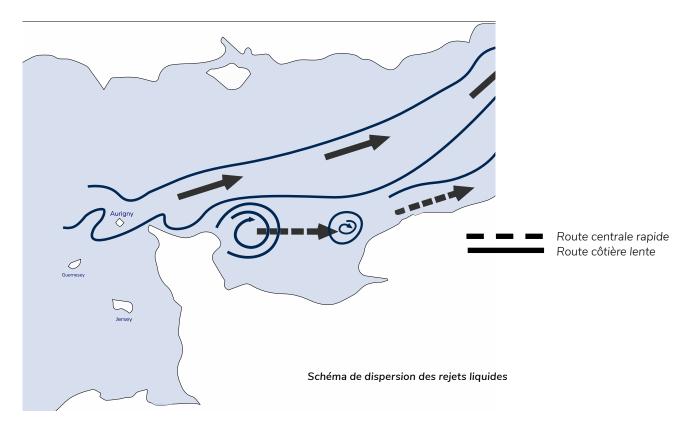
^{*} rapport poids sec/poids frais

Légumes & aliments divers

Luguinuo	Leguines & annients divers								
Du (leu fueie	Mûres	Cidre**	Carottes	Pommes de terre	Œufs				
Bq/kg frais	Omonville	Saint-Germain	Herqueville	Herqueville	Herqueville				
⁴⁰ K	51	31	110	140	46				
⁶⁰ Co	≤ 0,04	≤ 0,04	≤ 0,05	≤ 0,05	≤ 0,09				
106RuRh	≤ 0,53	≤ 0,68	≤ 0,65	≤ 0,67	≤ 1,20				
¹²⁵ S b	≤ 0,07	≤ 0,11	≤ 0,09	≤ 0,09	≤ 0,14				
¹³⁴ Cs	≤ 0,03	≤ 0,03	≤ 0,03	≤ 0,03	≤ 0,06				
¹³⁷ Cs	≤ 0,03	≤ 0,04	0,04	≤ 0,04	≤ 0,06				
¹²⁹ I	0,03	≤ 0,15	0,04	≤ 0,04	≤ 0,03				
¹⁴ C	27,00	NM	11,00	9,90	30,00				
³H lié	3,30	NM	0,66	1,10	0,97				
²⁴¹ Am	≤ 0,03	≤ 0,22	≤ 0,04	≤ 0,04	≤ 0,04				
³ H libre	NM	12,00	3,70	NM	NM				
90Sr	NM	NM	NM	≤ 0,10	≤ 0,11				
²³⁸ Pu	NM	NM	NM	≤ 0,01	≤ 0,01				
²³⁹ Pu+ ²⁴⁰ Pu	NM	NM	NM	≤ 0,01	≤ 0,01				
²⁴⁴ Cm	NM	NM	NM	≤ 0,01	≤ 0,01				
PS/PF*	0,17	NM	0,11	0,21	NM				


^{*} rapport poids sec/poids frais ** pour le cidre, résultats en Bq/L NM : non mesuré

Viandes


Bq/kg	Lapin	Mouton	Volaille
frais	Herqueville	La Hague	Herqueville
⁴⁰ K	120	130	120
⁶⁰ Co	≤ 0,12	≤ 0,14	≤ 0,13
¹⁰⁶ RuRh	≤ 1,60	≤ 1,70	≤ 1,80
¹²⁵ Sb	≤ 0,21	≤ 0,21	≤ 0,21
¹³⁴ Cs	≤ 0,08	≤ 0,09	≤ 0,09
¹³⁷ Cs	≤ 0,09	≤ 0,11	≤ 0,10
¹²⁹ I	≤ 0,07	≤ 0,05	≤ 0,06
¹⁴ C	52,00	28,00	27,00
³H lié	1,20	1,70	1,20
³H libre	NM	NM	3,20
²⁴¹ Am	≤ 0,09	≤ 0,06	≤ 0,07
90Sr		NM	NM
²³⁸ Pu	≤ 0,01	NM	NM
²³⁹ Pu+ ²⁴⁰ Pu	≤ 0,01	NM	NM
²⁴⁴ Cm	≤ 0,00	NM	NM
PS/PF*	0,28	0,24	0,27

^{*} rapport poids sec/poids frais NM : non mesuré

La surveillance de la radioactivité du milieu marin

4.2.1. L'EAU DE MER

Études radioécologiques en Manche et mer du Nord

La grande précision des mesures de radioactivité à bas niveau, le choix pertinent de marqueurs spécifiques des sources d'émission ont permis d'améliorer la connaissance des courants et des phénomènes de transfert en milieu marin.

Les déplacements des masses d'eau sont étudiés en suivant des traceurs radioactifs, de préférence émetteurs gamma car ils sont faciles et rapides à mesurer. Ces radioéléments peuvent avoir plusieurs origines : retombées atmosphériques des essais nucléaires passés, Tchernobyl, rejets des installations nucléaires.

Études de la courantologie en Manche

La Manche est une importante zone de transit des eaux atlantiques vers la Mer du Nord via le Pas-de-Calais. Elle est donc en perpétuel renouvellement par l'ouest. Ce mouvement a d'ailleurs pour effet de confronter des eaux marines avec des eaux côtières alimentées par la Seine et quelques rivières de moindre importance. Côté français, ces eaux côtières sont plaquées sur le continent le long duquel elles forment un « fleuve côtier », moins salé, différemment peuplé et présentant des écarts thermiques avec la pleine mer. La transition entre la zone côtière et la zone extérieure se fait par un front au niveau duquel les paramètres précédents évoluent brusquement.

Sous la poussée des eaux atlantiques, les rejets de l'établissement de la Hague se dispersent essentiellement vers le nord-est. La distribution de la concentration de l'activité

est structurée en bandes parallèles dans le sens du courant avec un gradient décroissant des eaux françaises vers les eaux anglaises.

La plus grande partie des rejets transite vers le nord-est, alors que la fraction restante (inférieure à 5 %) est entraînée dans le golfe normand-breton. Dans ce contexte, le Pas-de-Calais et le fleuve côtier prennent une importance particulière pour les transferts et la dispersion des rejets. Dans le Pas de Calais, on retrouve la structure en bandes parallèles avec un gradient décroissant de l'activité entre les eaux marines bordant le fleuve côtier et les eaux côtières anglaises.

De nombreux travaux sont menés sur ce sujet par l'Institut de Radioprotection et de Sûreté Nucléaire (IRSN).

Ces travaux de l'IRSN portent notamment sur la mise au point des techniques d'études et de mesure, pour « tracer » les radioéléments, sur l'identification des indicateurs biologiques de la radioactivité (ceux qui vont la porter) et sur la connaissance des possibilités de transfert de la radioactivité vers l'homme.

Les prélèvements en mer permettent, au fil des campagnes successives et grâce aux échantillons prélevés dans la faune, la flore et les sédiments marins, d'étudier le comportement des éléments radioactifs en « vraie grandeur ».

Les résultats de ces études ont été largement publiés dans la presse scientifique internationale.

Moyennes annuelles 2023

Mesure d'eau de mer au large

Il est réalisé au large de la côte un prélèvement trimestriel d'eau de mer.

Bq/l	Nez de Jobourg	Cap de La Hague	
Bêta global	13	13	12
⁴⁰ K	12,3	13,0	13,5
⁶⁰ Co	≤ 0,20	≤ 0,18	≤ 0,18
¹⁰⁶ RuRh	≤ 2,78	≤ 2,60	≤ 2,68
¹²⁵ Sb	≤ 0,40	≤ 0,39	≤ 0,39
¹³⁴ Cs	≤ 0,15	≤ 0,14	≤ 0,14
¹³⁷ Cs	≤ 0,18	≤ 0,16	≤ 0,16
¹²⁹ I	≤ 0,11	≤ 0,11	≤ 0,11
Tritium	16,3	9,3	7,1
²⁴¹ Am	≤ 0,14	≤ 0,15	≤ 0,14
⁹⁰ Sr	≤ 0,002	NM	NM

Mesure d'eau de mer à la côte

Un prélèvement quotidien est effectué à Goury ainsi que dans l'anse des Moulinets. Il est constitué une aliquote mensuelle de ces prélèvements pour analyse.

Le principal radioélément mesuré dans l'eau de mer est le potassium 40 (environ 13 Bq/L en Bêta global), radioélément d'origine naturelle.

Bq/l	Anse des Moulinets	Goury
Bêta global	12,3	12,3
⁴⁰ K	13,0	12,0
⁶⁰ Co	≤ 0,19	≤ 0,19
¹⁰⁶ RuRh	≤ 2,75	≤ 2,65
¹²⁵ Sb	≤ 0,40	≤ 0,38
¹³⁴ Cs	≤ 0,14	≤ 0,14
¹³⁷ Cs	≤ 0,17	≤ 0,16
¹²⁹ I	≤ 0,01	≤ 0,01
Tritium	8,8	9,7
90Sr	0,0013	0,0011
²⁴¹ Am	≤ 0,15	≤ 0,15
²³⁸ Pu (mBq/L)	≤ 0,015	≤ 0,022
²³⁹ Pu ²⁴⁰ Pu (mBq/L)	≤ 0,016	≤ 0,017

Le signe \leq signifie que le résultat de l'analyse se situe en-deçà du seuil de décision.

La valeur pour le potassium 40 (40K) est d'origine naturelle.

Le résultat de la mesure Bêta global est dû à l'activité du potassium

40 (radioélément d'origine naturelle).

Points de prélèvement d'eau de mer

4.2.2. LES SÉDIMENTS MARINS

Des opérations de prélèvements trimestriels de sédiments marins sont menées au large des côtes en 8 points.

Ces prélèvements sont effectués par un prestataire à l'aide d'un godet ou par plongeur. Les mesures sont réalisées par le laboratoire environnement d'Orano.

Les échantillons sont séchés en étuve puis tamisés avant d'être analysés. Les émetteurs gamma sont mesurés directement sur un détecteur Germanium Hyperpur. Le dosage du plutonium se fait par spectrométrie alpha sur un détecteur silicium après calcination, minéralisation, précipitation des hydroxydes, séparation du plutonium par résine et électrodéposition.

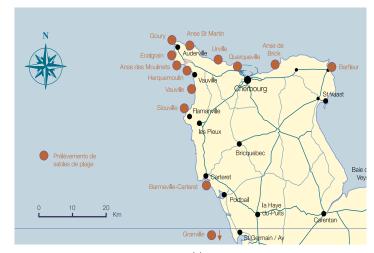
Points de prélèvement des sédiments marins

Moyennes annuelles 2023

Bq/kg fais	Anse des Moulinets	Anse du Brick cap Lévi D1	Écalgrain	Anse Saint Martin	Grande rade Cherbourg	Anse du Brick cap Lévi D2	Barfleur	Sciotot
⁴⁰ K	203	198	278	218	178	168	258	220
⁶⁰ Co	≤ 0,12	≤ 0,17	≤ 0,13	0,23	0,85	0,15	≤ 0,14	≤ 0,13
¹⁰⁶ RuRh	≤ 1,78	≤ 2,08	≤ 1,90	≤ 1,73	≤ 2,03	≤ 1,73	≤ 2,05	≤ 1,83
¹²⁵ Sb	≤ 0,25	≤ 0,30	≤ 0,27	≤ 0,25	≤ 0,28	≤ 0,34	≤ 0,28	≤ 0,26
¹³⁴ Cs	≤ 0,09	≤ 0,10	≤ 0,09	≤ 0,08	≤ 0,10	≤ 0,09	≤ 0,10	≤ 0,09
¹³⁷ Cs	0,10	0,28	0,22	≤ 0,24	≤ 0,47	≤ 0,16	≤ 0,13	≤ 0,11
129 T	0,24	≤ 0,31	≤ 0,30	≤ 0,32	≤ 0,53	≤ 0,25	≤ 0,28	≤ 0,26
²⁴¹ Am	≤ 0,36	1,22	0,85	1,23	1,60	0,65	0,40	0,49
⁹⁰ Sr	0,47	≤ 0,68	≤ 0,49	≤ 0,53	≤ 0,77	≤ 0,73	≤ 0,52	≤ 0,63
²³⁸ Pu	0,11	0,21	0,14	0,25	0,29	0,16	≤ 0,09	0,17
²³⁸ Pu + ²⁴⁰ Pu	0,20	0,58	0,41	0,48	0,59	0,39	0,23	0,26
²⁴⁴ Cm	≤ 0,05	≤ 0,08	≤ 0,08	≤ 0,07	≤ 0,06	≤ 0,05	≤ 0,03	≤ 0,07

Le signe $\leq \,$ signifie que le résultat de l'analyse se situe en-deçà du seuil de décision.

4.2.3. LES SABLES DE PLAGE


Des prélèvements trimestriels de sable de plage sont effectués en différents points de la côte.

Il est effectué sur ces échantillons une analyse par spectrométrie gamma.

Poids sec et poids frais

Afin de pouvoir comparer les résultats d'analyses d'une période sur l'autre ou avec d'autres laboratoires, les échantillons sont analysés sur la matière sèche. En effet, la masse d'eau d'un échantillon « frais » (venant d'être collecté et non asséché) influe beaucoup sur l'expression du résultat qui s'exprime en Becquerel par kilogramme. Seuls n'ont d'intérêt que les radioéléments contenus dans l'échantillon brut proprement dit. C'est pourquoi il est étuvé et réduit en poudre avant d'être analysé.

Par contre, l'expression des résultats en Becquerel par kilogramme frais (c'est-à-dire contenant encore de l'eau) a un intérêt pour la représentation de l'impact. En effet, pour le cas des aliments, nous achetons et consommons des aliments non étuvés. Donc cette expression des résultats est plus représentative de l'activité que nous ingérons réellement.

Points de prélèvement des sables de plage

Les quelques valeurs significatives inférieures à 1 pour le Césium 137 (137Cs) et l'Américium 241 (241Am) sont en fait de l'ordre du seuil de décision.

La valeur significative en Césium 137 (137Cs) à l'Anse des Moulinets provient d'un marquage historique, elle est appelée à décroitre au cours du temps.

Moyennes annuelles 2023

Bq/kg frais	Anse St Martin	Barfleur	Anse du Brick	Querqueville	Urville	Anse des Mou- linets	Granville
⁴⁰ K	658	475	713	253	228	500	228
⁶⁰ Co	≤ 0,17	≤ 0,17	≤ 0,21	≤ 0,12	≤ 0,14	≤ 0,17	≤ 0,13
¹⁰⁶ RuRh	≤ 2,25	≤ 2,68	≤ 2,93	≤ 1,68	≤ 1,90	≤ 2,30	≤ 2,03
¹²⁵ Sb	≤ 0,30	≤ 0,36	≤ 0,38	≤ 0,24	≤ 0,25	≤ 0,31	≤ 0,29
¹³⁴ Cs	≤ 0,11	≤ 0,13	≤ 0,14	≤ 0,08	≤ 0,09	≤ 0,12	≤ 0,10
¹³⁷ Cs	0,22	≤ 0,20	≤ 0,18	0,35	≤ 0,13	2,13	≤ 0,13
¹²⁹ I	≤ 0,32	≤ 0,36	≤ 0,34	≤ 0,20	≤ 0,21	≤ 0,28	≤ 0,31
²⁴¹ Am	0,45	≤ 0,46	0,26	≤ 0,21	≤ 0,63	0,73	≤ 0,42
PS/PF*	0,77	0,78	0,77	0,77	0,78	0,81	0,76

Bq/kg frais	Barneville	Siouville	Herquemoulin	Écalgrain	Goury
⁴⁰ K	253	353	383	285	320
⁶⁰ Co	≤ 0,15	≤ 0,15	≤ 0,17	≤ 0,12	≤ 0,18
¹⁰⁶ RuRh	≤ 2,15	≤ 2,25	≤ 2,25	≤ 1,68	≤ 2,50
¹²⁵ Sb	≤ 0,29	≤ 0,30	≤ 0,29	≤ 0,23	≤ 0,35
¹³⁴ Cs	≤ 0,10	≤ 0,11	≤ 0,11	≤ 0,08	≤ 0,12
¹³⁷ Cs	≤ 0,13	≤ 0,29	0,34	≤ 0,22	≤ 0,15
¹²⁹ I	≤ 0,28	≤ 0,27	≤ 0,25	≤ 0,28	≤ 0,38
²⁴¹ Am	≤ 0,30	≤ 0,43	0,44	0,60	0,80
PS/PF*	0,81	0,79	0,79	0,74	0,95

^{*} Rapport Poids Sec/Poids Frais. Le signe ≤ signifie que le résultat de l'analyse se situe en-deçà du seuil de décision.

4.2.4. LES ALGUES (FUCUS)

De nombreuses espèces d'algues vivent sur les côtes de la Manche. Les algues sont spécifiquement suivies car elles concentrent fortement les éléments radioactifs.

Le fucus est l'espèce la plus répandue. Il se développe en général entre le niveau moyen des basses mers de vives eaux et le niveau supérieur des basses mers de mortes eaux. En haut de l'estran, on trouvera les lichens et plus bas les laminaires.

Des prélèvements trimestriels sont effectués à marée basse, le plus bas possible de l'estran afin de recueillir les algues ayant séjourné le plus de temps dans l'eau de mer.

Moyennes annuelles 2023

Bq/kg frais	Anse des Moulinets	Barfleur	Anse du Brick	Querqueville	Urville	Anse St-Martin	Goury
⁴⁰ K	258	285	243	225	233	258	263
⁶⁰ Co	≤ 0,07	≤ 0,08	≤ 0,07	≤ 0,05	≤ 0,06	≤ 0,06	0,09
¹⁰⁶ RuRh	0,92	≤ 1,02	≤ 0,88	≤ 0,68	≤ 0,82	≤ 0,79	≤ 0,89
¹²⁵ Sb	≤ 0,11	≤ 0,13	≤ 0,10	≤ 0,09	≤ 0,10	≤ 0,10	≤ 0,10
¹³⁴ Cs	≤ 0,04	≤ 0,05	≤ 0,04	≤ 0,03	≤ 0,04	≤ 0,04	≤ 0,04
¹³⁷ Cs	0,06	≤ 0,07	≤ 0,05	0,04	0,05	0,05	≤ 0,05
¹²⁹ I	8,13	2,03	2,30	2,90	3,66	5,78	12,43
²⁴¹ Am	≤ 0,06	≤ 0,07	≤ 0,05	≤ 0,05	≤ 0,05	≤ 0,06	≤ 0,06
PS/PF*	0,21	0,24	0,21	0,20	0,20	0,21	0,19

Bq/kg frais	Écalgrain	Herquemoulin	Siouville	Barneville	Granville
⁴⁰ K	290	283	268	305	280
⁶⁰ Co	0,10	0,08	0,08	≤ 0,08	≤ 0,07
106RuRh	≤ 1,20	1,02	0,89	≤ 1,05	≤ 0,88
¹²⁵ Sb	≤ 0,14	≤ 0,12	≤ 0,11	≤ 0,13	≤ 0,11
¹³⁴ Cs	≤ 0,06	≤ 0,05	≤ 0,04	≤ 0,05	≤ 0,04
¹³⁷ Cs	0,07	0,06	≤ 0,05	≤ 0,06	0,05
¹²⁹ I	7,68	8,05	6,65	2,03	0,97
²⁴¹ Am	≤ 0,06	≤ 0,06	≤ 0,05	≤ 0,06	≤ 0,05
³H libre	NM	1,90	NM	NM	NM
PS/PF*	0,28	0,24	0,20	0,24	0,20

La valeur pour l'Iode 129 (1291) est directement liée aux rejets annuels.

En six points de la côte, des analyses complémentaires de Carbone 14 et des émetteurs alpha du Plutonium sont effectuées trimestriellement. NM: non mesuré

Bq/kg frais	¹⁴ C*	²³⁸ Pu	²³⁹ Pu+ ²⁴⁰ Pu
Anse des Moulinets	29,50	<0,03	0,04
Barfleur	24,75	0,02	0,03
Querqueville	20,25	0,01	0,02
Urville	21,00	0,03	0,03
Goury	25,00	0,02	0,08
Barneville	22,00	<0,02	0,03

^{*} Carbone 14 d'origine naturelle et artificielle

La valeur significative du Carbone 14 ($^{14}\mathrm{C}$) provient essentiellement du carbone naturel.

4.2.5. LES CRUSTACÉS

Les crustacés constituent un maillon important pour le calcul d'impact des rejets liquides de l'établissement. La région Nord / Nord-Ouest est une zone propice à cette pêche.

Des tourteaux sont achetés aux pêcheurs locaux dans la zone Nord (Goury à Gatteville) ainsi que dans la zone Nord-Ouest du Cotentin (Diélette à Goury).

Il en est de même pour les homards dans la zone Nord-Ouest.

Les prélèvements sont effectués trimestriellement. Les analyses sont faites sur la chair des crustacés.

Moyennes annuelles 2023

Bq/kg frais	Tourteaux Côte Nord	Tourteaux Côte Ouest	
⁴⁰ K	104	105	108
⁶⁰ Co	≤ 0,07	≤ 0,08	≤ 0,07
¹⁰⁶ RuRh	≤ 0,99	≤ 1,20	≤ 1,00
¹²⁵ Sb	≤ 0,14	≤ 0,16	≤ 0,14
¹³⁴ Cs	≤ 0,14	≤ 0,06	≤ 0,05
¹³⁷ Cs	≤ 0,07	≤ 0,07	≤ 0,06
¹²⁹ I	0,07	0,21	1,31
²⁴¹ Am	≤ 0,05	≤ 0,06	≤ 0,05
¹⁴ C*	37,00	45,00	52,75
²³⁸ Pu	≤ 0,004	≤ 0,003	≤ 0,002
²³⁹ Pu+ ²⁴⁰ Pu	≤ 0,004	≤ 0,003	≤ 0,002
³H libre	NM	8,20	NM
PS/PF**	0,24	0,27	0,26

^{*} Carbone 14 d'origine naturelle et artificielle.

Le signe \leq signifie que le résultat de l'analyse se situe en-deçà du seuil de décision.

NM : non mesuré

4.2.6. LES POISSONS

Des poissons plats et ronds sont achetés aux pêcheurs locaux. Les poissons ronds vivent et se nourrissent en eaux vives, les poissons plats vivent près des sédiments. Ces deux caractéristiques de leur mode de vie nécessitent une surveillance distincte.

Ces poissons sont péchés trimestriellement le long des côtes Nord, Est et Ouest du Cotentin, l'analyse est effectuée sur la chair.

Poissons ronds

Parmi les poissons ronds analysés, on trouvera principalement : la roussette, le congre, le ha, la vieille, la gode et la dorade.

Moyennes annuelles 2023

Bq/kg frais	Zone Est	Zone Nord	Zone Ouest
⁴⁰ K	130,0	127,5	114,0
⁶⁰ Co	≤ 0,07	≤ 0,09	≤ 0,06
¹⁰⁶ RuRh	≤ 0,88	≤ 1,13	≤ 0,79
¹²⁵ Sb	≤ 0,12	≤ 0,15	≤ 0,10
¹³⁴ Cs	≤ 0,05	≤ 0,06	≤ 0,04
¹³⁷ Cs	0,10	0,15	0,06
¹²⁹ I	≤ 0,05	0,05	0,04
²⁴¹ Am	≤ 0,05	≤ 0,05	≤ 0,04
¹⁴ C*	29,50	37,25	31,25
²³⁸ Pu	≤ 0,002	≤ 0,002	≤ 0,002
²³⁹ Pu+ ²⁴⁰ Pu	0,002	0,002	≤ 0,003
³H libre	NM	NM	1,30
PS/PF**	0,20	0,21	0,20

^{*} Carbone 14 d'origine naturelle et artificielle.

Le signe \leq signifie que le résultat de l'analyse se situe en-deçà du seuil de décision.

NM : non mesuré

Schéma des prélèvements en fonction des zones

^{**} Rapport Poids Sec/Poids Frais.

^{**} Rapport Poids Sec sur Poids Frais

Poissons plats

Parmi les poissons plats analysés, on trouvera essentiellement la raie, la plie et la sole.

Moyennes annuelles 2023

Bq/kg frais	Zone Est	Zone Nord	Zone Ouest
⁴⁰ K	135	130	114
⁶⁰ Co	≤ 0,07	≤ 0,08	≤ 0,07
106RuRh	≤ 0,93	≤ 1,05	≤ 0,88
¹²⁵ Sb	≤ 0,12	≤ 0,14	≤ 0,13
¹³⁴ Cs	≤ 0,05	≤ 0,05	≤ 0,05
¹³⁷ Cs	0,07	0,24	0,15
¹²⁹ I	≤ 0,04	≤ 0,05	≤ 0,04
²⁴¹ Am	≤ 0,05	≤ 0,05	≤ 0,04
¹⁴ C*	29,75	33,25	27,25
²³⁸ Pu	≤ 0,002	≤ 0,003	≤ 0,004
²³⁹ Pu+ ²⁴⁰ Pu	≤ 0,002	≤ 0,003	≤ 0,004
³H libre	NM	NM	1,30
PS/PF**	0,21	0,23	0,22

^{*} Carbone 14 d'origine naturelle et artificielle

Le signe ≤ signifie que le résultat de l'analyse se situe en-deçà du seuil de décision.

NM: non mesuré

4.2.7. LES COQUILLES SAINT-JACQUES

Des prélèvements trimestriels sont effectués dans la rade de Cherbourg par un prestataire avant d'être analysés.

Movembe annualles 2027

woyennes a	innuelles 202
Bq/kg frais	Zone Nord
⁴⁰ K	112
⁶⁰ Co	0,08
106RuRh	≤ 1,14
¹²⁵ Sb	≤ 0,14
¹³⁴ Cs	≤ 0,05
¹³⁷ Cs	≤ 0,26
¹²⁹ I	0,08
²⁴¹ Am	≤ 0,06
¹⁴ C*	33,50
²³⁸ Pu	0,02
²³⁹ Pu+ ²⁴⁰ Pu	0,03
³H Libre	6,70
PS/PF**	0,25

Analyses

Après séparation de la chair et de la coquille, la chair est séchée en étuve puis broyée et conditionnée. Les analyses de spectrométrie gamma (60Co, 106RuRh, 125Sb, 134Cs, 137Cs, ¹²⁹l) sont effectuées sur un détecteur Germanium Hyperpur. Le carbone 14 est mesuré par scintillation liquide après piégeage du CO₂ issu de la combustion d'un échantillon séché et mélange avec un liquide scintillant.

Ces méthodes d'analyses sont les mêmes pour l'analyse des huîtres, moules et crustacés.

4.2.8. LES PATELLES

La patelle est un mollusque comestible à coquille conique, très abondant sur les rochers découvrant à marée basse.

La patelle est également appelée bernique (ou bernicle) ou chapeau chinois. Elle est de la classe des gastropodes.

Des prélèvements sont effectués trimestriellement en 12 points le long des côtes de la Manche.

Moyennes annuelles 2023

En 6 points de la côte, des analyses complémentaires de Carbone 14 et des émetteurs alpha du Plutonium sont effectuées sur les patelles.

Bq/kg frais	Écalgrain	Herquemou lin	Siouville	Barneville	Granville
⁴⁰ K	105	85	93	70	97
⁶⁰ Co	≤ 0,11	≤ 0,08	≤ 0,10	≤ 0,07	≤ 0,10
106RuRh	≤ 1,55	≤ 1,22	≤ 1,35	≤ 1,00	≤ 1,38
¹²⁵ Sb	≤ 0,19	≤ 0,16	≤ 0,17	≤ 0,14	≤ 0,18
¹³⁴ Cs	≤ 0,07	≤ 0,06	≤ 0,07	≤ 0,05	≤ 0,07
¹³⁷ Cs	≤ 0,09	≤ 0,07	≤ 0,08	≤ 0,06	≤ 0,08
¹²⁹ I	≤ 0,28	0,31	≤ 0,33	≤ 0,08	≤ 0,07
²⁴¹ Am	≤ 0,07	≤ 0,06	≤ 0,06	≤ 0,05	≤ 0,07
³H libre	NM	14,00	NM	NM	NM
PS/PF*	0,34	0,31	0,29	0,28	0,32

^{*} Rapport Poids Sec/Poids Frais.

Le signe ≤ signifie que le résultat de l'analyse se situe en-deçà du seuil de

NM: non mesuré

Bq/kg frais	¹⁴ C*	²³⁸ Pu	²³⁹ Pu+ ²⁴⁰ Pu
Anse des Moulinets	46,3	≤ 0,008	0,013
Barfleur	38,0	≤ 0,007	≤ 0,013
Querqueville	44,0	≤ 0,005	≤ 0,008
Urville	28,8	≤ 0,025	0,042
Goury	52,0	≤ 0,006	0,010
Barneville	37,3	≤ 0,006	0,009

^{*} Carbone 14 d'origine naturelle et artificielle

^{**} Rapport Poids Sec sur Poids Frais

Bq/kg frais	Anse des Moulinets	Barfleur	Anse du Brick	Querqueville	Urville	Anse St-Martin	Goury
⁴⁰ K	86	106	97	99	94	88	83
⁶⁰ Co	≤ 0,08	≤ 0,10	≤ 0,10	≤ 0,09	≤ 0,08	≤ 0,08	≤ 0,08
¹⁰⁶ RuRh	≤ 1,13	≤ 1,40	≤ 1,45	≤ 1,17	≤ 1,13	≤ 1,18	≤ 1,18
¹²⁵ Sb	≤ 0,14	≤ 0,18	≤ 0,18	≤ 0,16	≤ 0,16	≤ 0,15	≤ 0,16
¹³⁴ Cs	≤ 0,06	≤ 0,07	≤ 0,07	≤ 0,06	≤ 0,06	≤ 0,06	≤ 0,06
¹³⁷ Cs	≤ 0,06	≤ 0,08	≤ 0,08	≤ 0,07	≤ 0,07	≤ 0,07	≤ 0,06
¹²⁹ I	≤ 0,42	≤ 0,13	≤ 0,10	0,18	≤ 0,10	0,33	0,67
²⁴¹ Am	≤ 0,06	≤ 0,07	≤ 0,07	≤ 0,07	≤ 0,07	≤ 0,06	≤ 0,06
PS/PF*	0,28	0,32	0,31	0,32	0,33	0,31	0,29

4.2.9. LES HUÎTRES

Avec des courants différents, des apports planctoniques fluctuant selon la topographie de l'estran sur lequel ils sont localisés, on trouve deux principaux sites de culture dans le département de La Manche :

Côte Ouest : de Granville à Portbail et principalement autour de Blainville,

Côte Est : Saint-Vaast-la-Hougue.

Ces deux sites représentent une production annuelle de plus de 25 000 tonnes et font du département de la Manche un des principaux producteurs français.

Dans deux zones situées sur les côtes Est et Ouest du Cotentin (zones de Saint-Vaast-la-Hougue et d'Agon-Coutainville), des prélèvements d'huîtres sont effectués auprès des conchyliculteurs.

Les analyses sont effectuées sur la chair du coquillage.

Moyennes annuelles 2023

Bq/kg frais	Zone Est	Zone Ouest	
⁴⁰ K	50	62	
⁶⁰ Co	≤ 0,05	≤ 0,07	
106RuRh	≤ 0,78	≤ 1,08	
¹²⁵ Sb	≤ 0,11	≤ 0,13	
¹³⁴ Cs	≤ 0,04	≤ 0,05	
¹³⁷ Cs	≤ 0,04	≤ 0,06	
¹²⁹ I	≤ 0,04	≤ 0,05	
²⁴¹ Am	≤ 0,04	≤ 0,05	
¹⁴ C*	24,25	30,00	* Carbone 14 d'origine —naturelle et artificielle
²³⁸ Pu	≤ 0,003	≤ 0,003	** Rapport poids sec sur poids frais
²³⁹ Pu+ ²⁴⁰ Pu	0,005	0,007	Le signe ≤ signifie que le résultat de l'analyse se si
³H libre	NM	1,90	en-deçà du seuil de décis NM : non mesuré
PS/PF**	0,21	0,25	

La surveillance physico-chimique et biologique de l'environnement

4.3.1. L'EAU DE MER AU LARGE

Une surveillance écologique du milieu marin est effectuée au large de Barneville et du Nez de Jobourg. Elle s'effectue deux fois pour l'ensemble de la période d'octobre à février et une fois par mois de mars à septembre. Les prélèvements sont effectués en surface et à mi-hauteur de la masse d'eau par un prestataire. L'ensemble des analyses est effectué par l'IFREMER et le laboratoire LABEO à l'exception des analyses relatives aux populations phytoplanctoniques.

Points de prélèvement d'eau de mer au large.

Analyses hydrologiques

Valeurs moyennes relevées en 2022	Barneville Surface	Mi-profondeur	Nez de Jobourg Surface	Mi-profondeur
Température (°C)	13,4	13,1	11,1	11,4
Salinité (°/°°)	34,6	34,6	35,0	34,4
Oxygène (mg/L)	9,4	9,6	8,6	8,7

Analyses chimiques

Valeurs moyennes	Barneville	76' ()	Nez de Jobou	3
relevées en 2022	Surface	Mi-profondeur	Surface	Mi-profondeur
Nitrates (mg/L)	2,04	2,07	2,27	2,24
Nitrites (mg/L)	0,18	0,18	0,19	0,19
Phosphates (mg/L)	0,32	0,34	0,32	0,32
Ammonium (mg/L)	0,85	1,01	1,01	1,02

Analyses biologiques

Valeurs moyennes relevées en 2022	Barneville Surface	Mi-profondeur	Nez de Jobourg Surface	Mi-profondeur
Chlorophylle A (μg/L)	1,17	1,11	1,08	1,18
Pheopigments (µg/L)	0,17	0,18	0,19	0,15

4.3.2. L'EAU DE MER DANS L'ANSE DES MOULINETS

Une surveillance chimique et biologique est effectuée sur l'eau de mer dans l'anse des Moulinets. Les prélèvements ainsi que les analyses sont effectués mensuellement par le LABEO.

Analyses biologiques

Valeurs moyennes relevées en 2022	Gauche grève	Centre grève	Droite grève
Nitrates (mg/L)	10,47	6,94	15,18
Détergents anioniques (mg/L)	0,052	0,056	0,050
E coli (nb/100 ml)	143,2	123,6	190,8
Entérocoques (nb/100 ml)	29,5	34,9	32,8

4.3.3. SURVEILLANCE HYDROLOGIQUE ET PHYTOPLANCTONIQUE

Une étude de la masse d'eau par le biais d'un suivi hydrologique et phytoplanctonique dans le cadre de la surveillance des rejets non actifs de l'usine Orano du site de la Hague. Elle présente les résultats 2023 des analyses physico-chimiques des eaux et des analyses de phytoplancton. Deux sites ont été suivis : le site de Jobourg qui est sous l'influence des rejets de l'usine ORANO et le site de Barneville utilisé comme référence.

Hydrologie

Les mesures en oxygène dissous n'ont pas montré de différences significatives entre les deux sites en 2022, et le milieu restait très bien oxygéné. Concernant la salinité, les valeurs étaient stables et similaires entre les deux stations et entre les deux profondeurs. Aucune stratification n'a été observée entre la surface et la mi-profondeur.

En 2023, pour l'ensemble des nutriments nitrates, nitrites et orthophosphates, les valeurs mesurées faibles au printemps et en été estivale (juin-aout). Les valeurs maximales de nitrates, en hiver restaient bien en deçà des niveaux entrainant un risque d'eutrophisation selon l'arrêté du 9 septembre 2019.

Les teneurs moyennes en nitrates, nitrites, orthophosphates et ammoniac étaient similaires sur les deux sites, sans variabilité significative dans la colonne d'eau. Le pic d'ammoniac relevé en mai 2021 à Jobourg surface n'a plus été observé et peutêtre considéré comme exceptionnel.

Globalement les nutriments ont présenté des valeurs proches des années 2016-2020 avec des augmentations de leurs concentrations en période automnale-hivernale pour les deux sites, ce qui s'explique par le processus de reminéralisation

de la matière organique par les bactéries et par l'augmentation de la pluviométrie entrainant l'augmentation des apports anthropiques dans le milieu marin en hiver. A contrario, la baisse de ces concentrations en nutriments au printempsété mettait en évidence le phénomène d'assimilation des nutriments par le phytoplancton. Cette évolution semblait similaire pour les deux stations. Les variations saisonnières observées sont habituellement mises en évidence dans les zones côtières tempérées ce qui correspond à la zone d'étude.

De rares pics de concentration en détergents anioniques, chloroforme, TBP et bromoforme ont été enregistrés pour les deux sites, majoritairement à mi-profondeur. En dehors de ces quelques valeurs mesurables, la majorité des concentrations sont en deçà de la LQ du laboratoire.

Ainsi, le suivi 2023 des paramètres hydrologiques réalisé dans le cadre de la surveillance des rejets non actifs de l'usine ORANO de la Hague n'a pas mis en évidence d'anomalies qui pourraient montrer un impact important des rejets. Aucun déséquilibre du milieu n'a été mis en avant d'après les résultats obtenus en 2023 pour la station de Jobourg située à proximité des rejets, ni celle de Barneville considérée comme référence pour cette étude. Toutefois, les concentrations en détergents anioniques et bromoforme seront à surveiller lors du prochain suivi.

Phytoplancton

Concernant la chlorophylle a, les concentrations mesurées étaient faibles pour la zone d'étude, avec toutefois la présence de blooms phytoplanctoniques au printemps et en été pour les deux sites. Les images satellites ont également montré des variations en chlorophylle totale sur l'année avec une saisonnalité marquée, mais celle-ci ne coïncidaient pas tout à fait avec les mesures réalisées par le laboratoire. Cette information est donnée à titre indicatif car les échelles d'étude sont difficilement comparables.

Les abondances en phytoplancton ont montré des blooms au printemps et/ou en été avec les plus fortes densités mai (Jobourg et Barneville) et en août à Barneville. En automnehiver, les abondances phytoplanctoniques étaient faibles que ce soit à Jobourg ou à Barneville. Depuis le début du suivi en 2016, le site de Barneville a présenté des abondances phytoplanctoniques plus élevées qu'à Jobourg dans plis de 2/3 des campagnes des campagnes.

L'étude systémique du phytoplancton a permis de recenser 85 taxons différents sur l'ensemble des stations, appartenant à six groupes. Les Diatomées ont constitué environ 95% des communautés présentes conformément à ce que l'on relève habituellement sur cette zone d'étude et plus largement sur les zones côtières de la Manche.

L'étude des communautés phytoplanctoniques dans la zone d'étude n'a pas montré de déséquilibre du milieu. Les densités mesurées étaient plus faibles que celles des suivis 2003-2014 et 2017-2021 et se rapprochaient des teneurs relevées en 2016. Les taxons observés étaient caractéristiques de la zone d'étude et ne présentaient pas d'anomalie importante pouvant mettre en exergue un impact des rejets de l'usine Orano de la Hague.

Conclusion générale 2023

Le suivi 2023 des paramètres hydrologiques et des communautés phytoplanctoniques, réalisé dans le cadre de la surveillance des rejets non actifs de l'usine Orano de la Hague, n'a pas mis en évidence d'anomalies qui pourraient montrer un impact important des rejets.

Les abondances phytoplanctoniques étaient plus faibles que celles des précédents suivis (excepté 2016), sans explication apparente. Les taxons observés étaient caractéristiques de la zone d'étude et ne présentaient pas d'anomalie importante pouvant mettre en exergue un impact des rejets de l'usine Orano de la Hague.

Les blooms phytoplanctoniques relevés en hiver 2021, en dehors de la période du bloom printanier

habituellement présent, n'ont plus été observés. Ceci confirmant l'hypothèse que ces blooms hivernaux étaient dus à des phénomènes naturels de restratifications intermittentes et locales de la couche de mélange, influençant localement la structure de la communauté phytoplanctonique en favorisant la croissance de diatomées.

4.3.4. SURVEILLANCE DE LA CONTAMINATION DE LA MATIÈRE VIVANTE (MYTILUS GALLOPROVINCIALIS)

Une évaluation de la contamination de la matière vivante (moules) a été réalisée en 2023 pour la surveillance des rejets non actifs de l'usine Orano du site de la Hague. Ce suivi est effectué dans le cadre de l'application de la Décision n° 2015-DC-0535 de l'Autorité de sûreté nucléaire du 22 décembre 2015. Cette étude présente les résultats 2023 des analyses physico-chimiques concernant les compartiments métalliques et organiques de deux lots de moules (Mytilus edulis). Deux sites ont été suivis, le premier est implanté dans le port de Goury et le second est situé dans l'Anse des Moulinets dans le Nord-Ouest Cotentin.

Les moules

Le suivi de 2023 a permis de suivre les concentrations en métaux et en organochlorés de la matière vivante (Mytilus galloprovincialis) pour les stations de l'Anse des Moulinets située à proximité de l'usine Orano et du port de Goury.

Les teneurs en métaux en 2023 étaient dans la lignée des précédents suivis avec des concentrations globalement en accord avec les programmes de suivi nationaux. Le chrome posait potentiellement problème avec des valeurs très élevées en 2023 et plusieurs dépassements de la valeur maximale du programme ROCCH (Réseau d'Observation de la Contamination CHimique du littoral) utilisée comme référence. Une tendance à l'augmentation a été constatée à partir de 2020, portée par les éléments aluminium, zinc et manganèse. En conclusion, la zone d'étude présentait

une contamination de la matière vivante (moules) par tous les éléments métalliques sans pour autant pouvoir mettre en évidence un lien direct avec l'usine Orano de la Hague à travers ses rejets non actifs.

Nota: concernant le chrome, les rejets de l'établissement sont stables au cours des dernières années, il n'y a pas d'augmentation des rejets notamment en 2023.

En conclusion, la zone d'étude présentait des concentrations mesurables et/ou plus ou moins élevées de tous les éléments métalliques sans pour autant pouvoir mettre en évidence un lien direct avec l'usine Orano de La Hague à travers ses rejets non actifs.

4.3.5. L'EAU DE LA NAPPE PHRÉATIQUE

Une surveillance chimique des eaux souterraines sousjacentes aux installations est effectuée semestriellement au moyen de 13 piézomètres (103, 113, 118, 140, 232, 270, 275, 320, 345, 359, 500, 600, 714).

Mesure des métaux lourds - Année 2023

mg/L	Valeur minimale	Valeur maximale
Co	≤ 0,001	≤ 0,006
Pb	≤ 0,001	≤ 0,017
Hg	≤ 0,0001	≤ 0,008
Cd	≤ 0,0000	≤ 0,001
Ni	≤ 0,002	≤ 0,023
Fe	≤ 0,007	≤ 335,0
Al	≤ 0,008	≤ 3,110
Cr	≤ 0,002	≤ 0,007
Cu	≤ 0,001	≤ 0,022
Zn	≤ 0,004	≤ 1,150
Mn	≤ 0,002	≤ 1,990

Certains marquages (aluminium, fer et manganèse) sont liés au fond géochimique du site.

Mesures physico-chimiques - Année 2023

mg/L	Valeur minimale	Valeur maximale
рН	5	7,2
Conductivité (µs/cm)	187	1020
COT (mg/L)	0,3	23
DCO (mg/LO ₂₎	10	16
Hydrocarbure (mg/L)	0,1	0,1
NH ₄ (mg/L)	0,05	1,47
nitrites (mg/L)	0,01	0,06
Nitrates (mg/L)	0,5	30,8
Sulfates (mg/L)	5	41

Les concentrations mesurées sont stables par rapport à celles observées l'année précédente.

À partir de l'activité rejetée dans les effluents liquides et gazeux et de sa dispersion dans le milieu, la radioactivité dans l'environnement (eau de mer, faune, flore, air, sols ...) est évaluée, puis l'impact dosimétrique est calculé en envisageant toutes les voies par lesquelles la radioactivité peut atteindre l'homme.

aux groupes de

référence

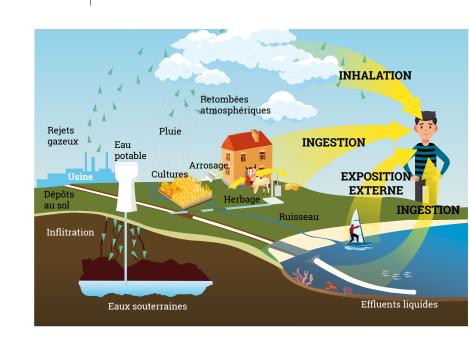
Comment s'effectue une évaluation des impacts ?

Cette évaluation porte sur des groupes de population identifiés comme étant les plus exposés localement à l'impact des rejets.

Le groupe de référence pour les rejets liquides est défini comme un groupe de pêcheurs vivant à Goury, en bord de mer, à 7 km du point de rejet, exerçant son activité professionnelle dans la zone proche et consommant les produits de la pêche locale. Le groupe de référence pour les rejets gazeux est défini comme un groupe d'agriculteurs habitant en zone proche et soumis à la direction des vents dominants et consommant les produits locaux (agriculteurs de Digulleville).

IMPACT 2023

Fin des années 1990, les ministères chargés de la Santé et de l'Environnement avaient mis en place un groupe de travail : le Groupe Radioécologie Nord Cotentin (GRNC) pour examiner les modalités des calculs d'impact dosimétrique et choisir les méthodes les plus appropriées.


Le GRNC a été piloté par l'Institut de Radioprotection et de Sûreté Nucléaire (IRSN), et ses travaux ont permis de définir une méthodologie conservative et reconnue qui est aujourd'hui utilisée pour calculer l'impact radiologique du site Orano la Hague.

Par ailleurs, afin d'avoir une évaluation réaliste de l'impact, il est nécessaire de bien connaître les modes de consommation et de vie des populations concernées ; dans ce but, deux enquêtes ont été menées par le CREDOC (Centre de Recherche pour l'ÉtuDe et l'Observation des Conditions de vie), organisme compétent en la matière.erocorrumenda

Le groupe de référence

pour les rejets gazeux est défini comme un groupe de population vivant sous les vents dominants.

L'impact radiologique de l'établissement en 2023 est plus de 100 fois inférieur à celui de la radioactivité naturelle.

L'impact de l'établissement (valeur maximale de l'impact pour les deux populations de référence) est d'environ 0,01 mSv (soit 1 % de la réglementation).

Édition 2023

Résultats et références

La dose reçue par un organisme humain suite à l'exposition à des rayonnements ionisants est mesurée en millisievert (mSv):

- L'équivalent de dose reçue par chaque individu du fait de la radioactivité naturelle en France est de 2,9 mSv/ an en moyenne (elle varie, suivant les régions, de 1,5 à 6 mSv/an). (Source IRSN)
- La réglementation française en vigueur limite à 1 mSv/ an pour le public la dose ajoutée du fait des activités nucléaires ; cette limite reprend une recommandation de la Commission Internationale de Protection Radiologique (CIPR) imposée par la directive européenne
- L'impact des rejets de l'établissement a été cette année de moins de 0,02 mSv/an sur les groupes de population susceptibles d'être les plus exposés. Cette dose correspond à moins de 1 % de l'exposition due à la radioactivité naturelle.

Impact annuel 2023 des rejets liquides et gazeux pour chaque population de référence

2023	Agriculteur de Digulleville	Pêcheur de Goury	Agriculteur de Herqueville
Rejets liquides (mSv)	0,0004	0,0023	0,0004
Rejets gazeux (mSv)	0,0087	0,0023	0,0041
Total en mSv	0,0091	0,0046	0,0045

La méthodologie du calcul de l'impact des rejets radioactifs sur les groupes de référence est donnée en annexe. Le modèle de calcul a été affiné par la prise en compte de paramètres météorologiques moyens pris sur une période référence météorologique de 1992 à 2013.

Depuis 2004 la mesure en temps réel du Krypton 85 dans chaque village équipé d'une station de mesure de la radioactivité de l'air permet de calculer avec précision des coefficients de transfert atmosphérique annuels et par là même, l'impact de l'ensemble des rejets gazeux (Krypton 85, iodes, carbone 14, tritium, aérosols ...).

Le tableau ci-après donne l'impact des rejets calculé sur la base des coefficients de transfert atmosphérique mesurés sur 2023, en retenant l'hypothèse du régime alimentaire et des modes de vie retenus dans le modèle **GRNC:**

Population	CTA ⁽¹⁾ (s/m³)	Impact annuel ⁽³⁾ (Sv/an)
Agriculteurs de Gréville (2)	1,81E-08	2,13E-06
Agriculteurs de Digulleville (2)	5,61E-08	5,78E-06
Agriculteurs de Beaumont (2)	2,90E-08	3,18E-06
Agriculteurs de Herqueville (2)	6,11E-08	6,25E-06
Agriculteurs de Jobourg (2)	2,14E-08	2,45E-06

⁽¹⁾ Coefficient de Transfert Atmosphérique

 $^{^{(2)}}$ Les régimes alimentaires et modes de vies retenus sont ceux définis par le groupe de référence « Agriculteur de Digulleville » (voir Annexe). (3) Coefficients de transfert atmosphérique mesurés sur l'année

via les données Krypton

Il est à noter que ces impacts sont inférieurs aux impacts de référence retenus avec le modèle selon les données GRNC.

L'estimation des doses reçues par la population est réalisée sur des hypothèses aussi réalistes que possible. Elle est effectuée pour les groupes de référence.

Elle s'appuie notamment sur l'évaluation des doses dues :

- à l'irradiation externe avec indication de la nature des rayonnements en cause,
- à l'incorporation de radionucléides avec indication de leur nature et, au besoin, de leurs états physique et chimique.

L'estimation des doses est accompagnée du recensement des principaux facteurs d'incertitudes associés au calcul de dose et d'études de sensibilité pour les facteurs qui concourent le plus à l'incertitude. L'analyse critique des calculs d'impact fait ressortir les principaux facteurs d'incertitudes associés au calcul de dose que sont le Coefficient de Transfert Atmosphérique (CTA) et les rations alimentaires des populations de référence.

Cette observation a conduit à la mise en place d'une mesure du krypton 85 dans les villages avoisinants, afin de calculer avec précision les coefficients de transfert atmosphérique annuels en fonction des vents.

Le CTA du groupe de référence est défini par rapport à une météorologie moyenne (période 1992-2013) et non suivant la météorologie réelle de l'année ; une étude de sensibilité est donc systématiquement réalisée selon la météorologie de l'année sur les populations des cinq villages autour du site, afin de vérifier le caractère conservatoire de la méthode.

La confrontation des valeurs calculées avec les concentrations mesurées dans l'environnement permet de justifier les méthodes et hypothèses qui ont été retenues, considérées globalement comme conservatrices.

Pour ce qui relève des rations alimentaires, il est considéré deux scénarios « gros mangeurs » de produits exposés aux rejets : produits terrestres à Digulleville et marins à Goury, ce qui est majorant pour le mode d'exposition par ingestion.

Cet important travail, qui a duré environ 2 ans et réuni près de 50 experts français et étrangers permet aujourd'hui d'affirmer que le risque de leucémie attribuable à l'exposition aux rejets radioactifs de l'établissement a été de l'ordre de 0,002 cas pour la période 1978-1996. En 2000, le groupe a repris ses travaux afin de calculer l'incertitude de ces résultats et d'évaluer l'impact des rejets chimiques de l'établissement.

Installations nucléaires	0,002 cas
Sources naturelles	0,62 cas
Sources médicales	0,20 cas
Autres (Tchernobyl, retombées des tirs nucléaires)	0,01 cas
Total:	0,83 cas

Le résultat de ces travaux publié en 2002 valide la très faible probabilité de risque de leucémie associé aux rejets tant radioactifs que chimiques de l'établissement.

Outre les travaux du GRNC sur les rejets radioactifs, le GRNC a également mené des études sur l'impact de nos rejets chimiques en concluant à l'absence d'impact de ceux-ci.

L'industrie nucléaire est l'une des industries les plus surveillées au monde. Les anomalies et incidents donnent lieu à une déclaration (auprès des autorités administratives et de l'Autorité de sûreté nucléaire) et à l'information du public. La déclaration des événements nucléaires est une obligation légale au titre de l'article L 591- 5 du Code de l'environnement mais aussi au titre du retour d'expériences attendu par l'ASN. Cette démarche de transparence va bien au-delà de ce qui est pratiqué dans d'autres industries.

Les événements déclarés

L'établissement déclare tout événement significatif pour la sûreté, l'environnement, les transports ou la radioprotection.

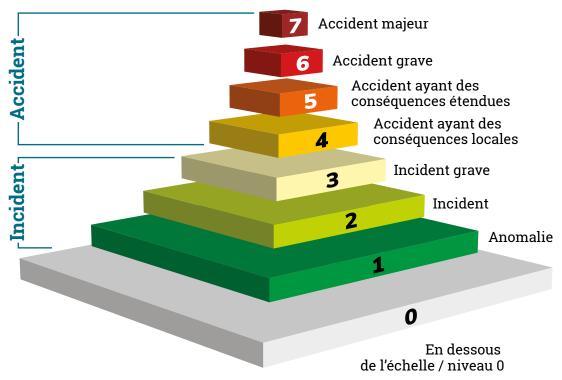
Le tableau suivant montre l'évolution de ces événements significatifs sur les trois dernières années.

Événements INES déclarés pendant l'année	2021	2022	2023
Niveau 2 et plus	0	0	0
Niveau 1	1	0	1
Niveau 0	27	37	32
Total	28	37	33

En 2023, 33 événements (6 radioprotection (ESR), 25 sûreté (24 ESS niveau 0 et 1 ESS niveau 1), 2 transport (EST) ont été déclarés auprès de l'Autorité de sûreté nucléaire. De plus, 6 événements environnement classés « Hors Échelle » INES ont été déclarés en 2023. Une description succincte des événements déclarés en 2023, ainsi que les principales actions correctives mises en œuvre à la suite de ces événements sont présentées dans le tableau des pages suivantes (le type correspond à : « S » pour Sûreté, « E » pour Environnement, « T » pour Transport, « R » pour Radioprotection, le « Niveau INES » est celui de l'échelle INES avec « HE » pour Hors Échelle). Dans le cadre de la politique de transparence du groupe Orano, chaque événement d'un niveau supérieur ou égal à zéro donne lieu à information de la Préfecture et du Président de la Commission locale d'information (CLI). Enfin tout incident ou anomalie d'un niveau supérieur ou égal à 1 donne lieu à la diffusion d'un communiqué de presse auprès des médias locaux et nationaux.

ÉCHELLE INES - 7 NIVEAUX

L'Autorité de sûreté nucléaire (ASN) est en charge de définir et contrôler le respect par les exploitants d'INB de la réglementation et des prescriptions techniques qu'elle leur signifie. En particulier, l'ASN fait prélever et analyser des échantillons d'effluents afin de vérifier la cohérence des bilans de rejets.


Des inspections menées par les représentants de l'ASN, sont régulièrement effectuées.

L'échelle INES

L'Échelle Internationale des Événements Nucléaires (INES) est un moyen d'informer le public rapidement et de façon cohérente sur l'importance pour la sûreté des événements survenus dans des installations nucléaires. En replaçant des événements dans une juste perspective, cette échelle peut faciliter la compréhension mutuelle entre la communauté nucléaire, les médias et le public.

Des événements sont classés sur l'échelle selon sept niveaux. Les événements correspondants aux niveaux supérieurs (4 à 7) sont qualifiés d'accidents, et ceux correspondant aux niveaux inférieurs (1 à 3) d'incidents. Les événements qui n'ont aucune importance du point de vue de la sûreté sont classés au niveau 0 (en-dessous de l'échelle) et sont qualifiés d'écarts. Les événements non pertinents du point de vue de la sûreté nucléaire sont dits « hors échelle ».

aucune importance du point de vue de la sûreté

Niveau 7 : accident majeur	Rejet majeur dans l'environnement	Réacteur de Tchernobyl (Ukraine), 1986. Fukushima (Japon), 2011
Niveau 6 : accident grave	Rejet important dans l'environnement	Usine de traitement des combustibles Kyshtym (URSS), 1957
Niveau 5 : accident	Dégâts internes graves, rejets limités	Réacteur de Three Miles Island (États-Unis), 1979
Niveau 4 : accident	Dégâts internes importants, rejets mineurs	Usine de fabrication de combustibles Tokaï-mura (Japon), 1999
Niveau 3: incident grave	Accident évité de peu, très faible rejet	Transport d'un colis dont le débit de dose était supérieur à la limite réglementaire (Suède, États-Unis), 2002
Niveau 2 : incident	Contamination importante et/ou défail- lance des systèmes de sûreté	Environ 2 à 3 par an en France
Niveau 1: anomalie	Sortie du fonctionnement autorisé	Environ 100 par an en France
Niveau 0 : écart	Aucune importance pour la sûreté	Plusieurs centaines par an en France

Description des événements déclarés en 2023

Туре	Ni- veau INES	Date de déclaration	Atelier	Intitulé	Installations, événements, et conséquences	Principales actions correctives	
Е	не	10/03/2023	НАРГ	Dépassement d'une limite d'émission de fluide frigori- gène définie par l'article R543- 87 du code de l'environnement relatif à la « prévention des fuites de fluides frigorigènes »	Le 14/03/2022, lors d'une intervention sur le groupe froid n°108 de l'atelier HAPF, une fuite de fluide frigorigène a été détectée sur cet équipement (53 kg). En l'absence de conséquence pour le personnel et sur l'environnement, cet événement, qui ne relève pas de l'échelle internationale des événements nucléaires, a été déclaré à l'Autorité de Sûreté au titre de l'environnement.	Une ronde journalière a été mise en place pour vérifier que le flexible d'azote est correctement connecté. Par ailleurs la documentation opérationnelle des atelers de cisaillage R1 et T1 a été mise à jour afin d'intégrer la vérification de la bonne connexion du flexible d'alimentation en azote.	
Е	не	15/09/2023	TOD	Émission ponctuelle de 54,32 kg de fluide frigo- rigène R134a au niveau du circuit n°2 du groupe froid n°10 de l'atelier T0 – Piscine D	Dans l'atelier T0 de l'usine UP3, une fuite de fluide frigorigène a été détectée sur un groupe froid (54,32 kg de R134a).	Suite à la détection de cet évene- ment, la fuite a été réparée et une campagne de vérification des autres équipements équivalents (Groupe Froid de charge en fluide frigorigène supérieure à 20kg) a été réalisée afin d'dentifier des problématiques similaires (corrosion des circuits de fluides frigorigènes).	
Е	не	24/10/2023	GUW Mouli- nets	Dépassement des limites fixées par la décision ASN 2015-DC- 536 modifiée (ARE- VA-LH-98) pour la concentration ins- tantanée et le flux 24h en hy- drocar- buresen fer des effluents liquides rejetés dans le ruisseau des Moulinets	Dans le cadre de la surveillance des rejets liquides de l'établissement Orano la Hague il a été constaté un dépassement de limite de flux 24 h pour le fer présent dans les eaux usées industrielles et domestiques (GUW) rejetées dans le ruisseau des Moulinets. L'analyse des eaux sur l'aliquote du 28 août 2023 fait apparaître un flux 24 h de 2,98 kg pour une limite fixée à 1,8 kg. Les autres paramètres physico-chimiques sur les eaux usées domestiques et industrielles (GUW) rejetées dans le ruisseau des Moulinets sont conformes. En l'absence de conséquence pour le personnel et sur l'environnement, cet événement, qui ne relève pas de l'échelle internationale des événements nucléaires, a été déclaré à l'Autorité de Sûreté au titre de l'environnement.	Les pompes d'injection de chlorure ferrique de la station d'épuration ont été vérifiées mécaniquement, ainsi que le réglage de l'injection de chlorure ferrique associé.	

Туре	Ni- veau INES	Date de déclaration	Atelier	Intitulé	Installations, événements, et conséquences	Principales actions correctives
E	не	24/11/2023	CPUS	Fuite au niveau du groupe froid (GROF) n°12 de la Centrale de Pro- duction des Uti- lités Sud (CPUS) ayant entraîné une émission de fluide frigorigène supérieure à 20kg (perte de 591kg de fluide R134a)	Le 22 novembre 2023, une fuite de 591 kg de fluide frigorigène de type R134a a été détectée sur un groupe froid de la cen- trale de production des utilités sud.	Des joints défectueux au niveau du filtre à huile du Groupe Froid (GROF) sont à l'origine de la fuite. Les joints défectueux ont été changés sur le GROF concerné. Ces joints seront changés d'ici le mois de juin 2024 sur l'ensemble des GROF du périmètre Production d'Energie. Un contrôle de leur état tous les 15 j est mis en place dans l'attente de leur remplacement. En parallèle, le contrôle du niveau de fluide frigorigène dans les équipements est intégré dans les rondes d'exploitation.
Е	не	01/12/2023	CPUS/ CPUN/ BCE	Écart de pesée de fluide frigo- rigène R134a pour plusieurs équipements dans les ateliers CPUN, CPUS et BCE suite à un nouveau procédé de pesage mis en place	Entre le 29 août 2023 et le 29 novembre 2023, des écarts de pesée de fluide frigorigène de type R134a ont été constatés sur quatre équipements des bâtiments CPUN (Centrale de Production des Utilités Nord), CPUS (Centrale de Production des Utilités Sud) et BCE (Bâtiment Central Est). Les pertes cumulées constituent un total de 941 kg de R134a.	La perte en fluide frigorigène est liée à plusieurs causes : la faible précision de la mesure de pesée, la perte intrinsèque liée aux transferts de fluides réalisés pour les opérations de maintenance, et la perte intrinsèque des équipements par conception. Suite à la détection d'écarts dans les quantités de fluides frigorigènes contenus dans les équipements, des appoints en fluide R134a ont été réalisés dans les équipements le nécessitant. les actions retenues pour limiter les fertes en fluides sont : - l'identification des actes de maintenance des équipements GROF et PAC pouvant être effectués sans transfert de fluide; - utilisation d'une méthode de pesée plus précise pour les groupes les équipements le permettant.

Туре	Ni- veau INES	Date de déclaration	Atelier	Intitulé	Installations, événements, et conséquences	Principales actions correctives
Е	не	22/12/2023	Réseaux gravi- taires à risques (GR)	Dépassements ponctuels des paramètres aluminium et MES lors des déversements d'eaux gravitaires à risques (GR) les 8, 13, 14, 15 et 16 novembre 2023 dans le ruisseau des Moulinets.	Dans le cadre de la surveillance des rejets liquides de l'Etablissement Orano la Hague, il a été constaté des dépassements de concentration en aluminium d'une part et en matières en suspension d'autre part, dans les eaux gravitaires à risque rejetées dans le ruisseau des Moulinets les 8,13,14,15 et 16 novembre 2023. Ces rejets sont dus aux fortes pluies sur la période. L'ensemble des autres paramètres analysés est conforme aux limites fixées.	Ces dépassements de limites de concentration ont pour origine les fortes teneurs en aluminium dans les eaux de drainage du site qui constituent une part importante des eaux gravitaires à risque. La présence d'aluminium dans les eaux de drainage est d'origine naturelle, lié à la nature géochimique des sols du site (présence de muscovite et de kaolinite constituées de silicate d'aluminium).

Notre politique environnementale

Les actions en faveur de la protection de l'environnement reposent sur la politique environnementale du groupe Orano qui est complétée par des actions locales avec les partenaires de l'établissement.

POLITIQUE HSE SÛRETÉ SANTÉ SÉCURITÉ RADIOPROTECTION ET ENVIRONNEMENT 2024-2026

Acteur du nucléaire en phase avec les enjeux climatiques et énergétiques, Orano s'engage à un haut niveau d'exigence dans ses activités pour préserver la sécurité et la santé des collaborateurs, la sûreté de ses installations et la protection de l'environnement.

Favorisons la mobilisation de tous et soyons exemplaires au quotidien afin d'encourager les comportements attendus et les bonnes pratiques observées sur le terrain. Poursuivons le développement de notre culture HSE* et assurons une remontée efficace et un traitement rapide des problèmes tout en nous appuyant sur les compétences de nos équipes et sur une politique HSE désormais unique.

Ancrer une solide culture du leadership

en matière de sûreté nucléaire, de sécurité industrielle, de sécurité au travail, de radioprotection, de protection de l'environnement

Construire un avenir durable

pour nos activités et nos collaborateurs dans le contexte de changement climatique

Contribuer par la maîtrise de nos risques à la performance

de nos activités industrielles et de nos projets dans un contexte de renouveau du nucléaire

Tendre vers un niveau de prévention et des exigences homogènes

pour tous les collaborateurs du groupe et pour tous les intervenants extérieurs

^{*}HSE (Health Safety Environment) couvre les domaines de la santé, de la sûreté nucléaire, de la sécurité industrielle, de la sécurité au travail, de la redisprete ction et de la protection de l'environment

Rapport annuel de surveillance de l'environnement Orano la Hague ANNEXE

Édition 2023

PRÉAMBULE

Décision n° 2015-DC-0535 de l'Autorité de sûreté nucléaire du 22 décembre 2015 fixant les prescriptions relatives aux modalités de prélèvement, de consommation d'eau et de rejet dans l'environnement des effluents liquides et gazeux des installations nucléaires de base nos 33 (UP2-400), 38 (STE2 et AT1), 47 (ELAN IIB), 80 (HAO), 116 (UP3-A), 117 (UP2-800) et 118 (station de traitement des effluents STE3) exploitées par Orano sur le site de La Hague (département de la Manche).

Décision n° 2015-DC-0536 modifiée par la Décision 2022-DC-0724 de l'Autorité de sûreté nucléaire du 22 décembre 2015

fixant les valeurs limites de rejet dans l'environnement des effluents liquides et gazeux des installations nucléaires de base nos 33 (UP2-400), 38 (STE2 et AT1), 47 (ELAN II B), 80 (HAO), 116 (UP3-A), 117 (UP2-800) et 118 (station de traitement des effluents STE3) exploitées par Orano sur le site de La Hague (département de la Manche).

Arrêté du 11 janvier 2016 portant homologation de la décision n° 2015-DC-0536 modifiée par la Décision 2022-DC-0724 de l'Autorité de sûreté nucléaire du 22 décembre 2015 fixant les valeurs limites de rejet dans l'environnement des effluents liquides et gazeux des installations nucléaires de base nos 33 (UP2-400), 38 (STE2 et AT1), 47 (ELAN II B), 80 (HAO), 116 (UP3-A), 117 (UP2-800) et 118 (station de traitement des effluents STE3) exploitées par Orano sur le site de La Hague (département de la Manche) (rectificatif).(département de la Manche).Ce rapport est rendu public et il est transmis à la Commission Locale d'Information (CLI) et au Haut Comité pour la Transparence et l'Information sur la Sécurité Nucléaire (HCTISN).

Les Décisions 2015-DC-0535 et 2015-DC-0536 modifiée par la Décision 2022-DC-0724 sont consultables sur le site ASN à l'adresse :

https://www.asn.fr/Reglementer/Bulletin-officiel-de-I-ASN/Installations-nucleaires/Decisions-individuelles/

SOMMAIRE

- Commission locale d'information de l'établissement Orano la Hague (CLI)
- 84 Météorologie et climatologie
- Surveillance radiologique, le point zéro
- Contrôles, essais périodiques et maintenance
- 94 Prévision des rejets 2023
- 104 Méthodologie de l'évaluation de l'impact des rejets radioactifs de l'établissement Orano la Hague sur les groupes de référence
- 120 Laboratoire environnemental
- Système de management environnement (SME)
- Recherche et réduction des substances dangereuses dans l'eau
- 124 Résultats détaillés
- 148 Bibliographie
- 152 Glossaire

Orano la Hague porte une attention particulière à l'information sur ses activités, en toute transparence. En 2023, le site a reçu 20 visites de presse et a participé à des événements du territoire tels que la Fête de la science à Cherbourg-en-Cotentin, ... Sur www.orano.group, des informations pédagogiques sur le recyclage des combustibles usés sont disponibles pour le grand public. Les résultats des analyses faites dans l'environnement proche de l'usine sont également consultables en permanence. Sa politique de partenariat lui permet d'apporter son soutien aux associations ou manifestations locales. Les trois axes choisis sont la lutte contre le réchauffement climatique et la préservation de l'environnement, l'accompagnement d'acteurs dans la lutte contre le cancer et enfin, le développement de projets industriels innovants et durables à forte valeur ajoutée.

Commission locale d'information de l'établissement Orano la Hague (CLI)

L'association créée en 1981 est chargée d'une mission générale de suivi, d'information et de concertation en matière de sûreté nucléaire, de radioprotection et d'impact des activités nucléaires sur les personnes et l'environnement pour ce qui concerne les installations du site.

En 2023, trois assemblées générales de la CLI ont été organisées dans les locaux de la mairie de La Hague :

- Le 8 mars, les sujets mis à l'ordre du jour par le bureau de la CLI étaient les suivants :
- Le bilan 2022 du site Orano la Hague et les perspectives 2023.
- Une déclaration d'événement « défaut sur les tuyauteries de prélèvement »
- La gestion et la maîtrise de la pérennité des installations du site Orano la Hague.
- L'avis réglementaire de l'IRSN sur la demande d'autorisation, transmise par Orano Recyclage, de procéder à l'assainissement du Parc aux Ajoncs.
- Le cadre administratif du traitement des combustibles Phénix et Super Phénix.
- Le 9 juin, les sujets mis à l'ordre du jour étaient :
- Présentation de l'avis de l'IRSN N° 2022-00215 portant sur la demande d'autorisation, transmise par Orano Recyclage, de procéder à l'assainissement du parc aux ajoncs en vue de l'implantation de la future piscine d'entreposage centralisé de combustibles usés.

- Présentation du rapport annuel d'information 2022 du site. Focus sur la situation des entreposages de rebut Mox et sur le projet NCPF.
- Présentation du rapport annuel de surveillance de l'environnement 2022
- Présentation du rapport sur le traitement des combustibles usés provenant de l'étranger.
- Présentation du rapport annuel 2022 de l'ASN, perspectives 2023. Présentation des dernières actualités réglementaires et notamment les publications au Journal Officiel des nouveaux textes réglementaires.
- Présentation des principes opératoires pour la reprise des terres marquées du Ruisseau des Landes. Résultats de la surveillance du ru des landes pour l'année 2022 et résultats des prélèvements de strontium du 4^è trimestre 2021. (Le planning de raccordement de NCPF (Nouvelles concentrations de Produits de Fission)
- Point sur la reprise des déchets du silo 130 et la reprise des boues STE2
- Inspection sur le thème du barrage des Moulinets

- Le 19 octobre, les sujets mis à l'ordre du jour étaient :
- Cinq évènements significatifs liés à des phénomènes de dépression.
- Retour sur l'inspection inopinée INSSN-CAE-2023-0102 du 12 juillet 2023 concernant la gestion du projet d'entreposage de Rebuts Boîtes MOX au sein de l'atelier R4.
- Recommandations de l'IRSN dans son avis N° 2022-00215 portant sur la demande d'autorisation, transmise par Orano Recyclage, de procéder à l'assainissement du parc aux ajoncs.
- Un point sur la reprise des terres marquées du ru des Landes.
- Retour sur l'inspection inopinée INSSN-CAE-2023-0909 du 28 juin 2023 sur l'exploitation des installations de reprise et de conditionnement des déchets du silo 130 au sein de l'INB n°38 du site de la Hague.

De plus, une information sur les événements liés à la sûreté survenus dans l'établissement est effectuée à chaque réunion.

Météorologie et climat

La partie Nord du Cotentin

est placée sous le régime du climat océanique de type dit « armoricain », mais il y a lieu de noter la présence d'un microclimat sur la pointe de La Hague, dû à la proximité de la mer et de l'altitude, caractérisé par la présence fréquente de brouillards très localisés.

STATION MÉTÉOROLOGIQUE DU SITE

Les mesures météorologiques permettent d'évaluer les transferts atmosphériques de rejets d'effluents radioactifs gazeux en fonctionnement normal et en situation incidentelle, et d'informer les différentes entités du site des événements météorologiques importants (fortes précipitations – vents violents).

Ces mesures répondent à une exigence réglementaire explicitée dans les Règles Fondamentales de Sûreté (RFS) applicables aux sites d'installations nucléaires de base ne comportant pas de réacteur à eau sous pression de production d'énergie électrique.

Par ailleurs, en dehors de tout incident radiologique, l'enregistrement des paramètres météorologiques constitue une banque de données qui permet de répondre aux problèmes techniques liés aux conditions climatiques les plus variées ainsi qu'à l'évaluation de l'impact des rejets gazeux.

L'établissement s'est doté d'une station sur le site pour la mesure de ces paramètres météorologiques. Cette station est implantée au Nord-Ouest de l'établissement.

Ces mesures sont réalisées par une station classique de type MIRIA possédant un mât de dix mètres.

En complément, un système acoustique de type SODAR réalise des mesures allant jusqu'à 200 mètres d'altitude. Ce système se justifie par la hauteur des émissaires principaux des usines UP2-400, UP3 et UP2-800 qui atteignent 100 mètres.

La nature et la précision des dispositifs retenus répondent aux points suivants :

- Utiliser des matériels éprouvés et fiables.
- Obtenir des données appropriées aux modèles de calculs.

3.1.1. MIRIA

Les installations au sol et à dix mètres de cette station correspondent à l'équipement habituel d'une station météorologique nationale et ont l'agrément de cet organisme de façon à permettre un raccordement correct au réseau existant.

Les paramètres météorologiques enregistrés sont les suivants :

- la vitesse et la direction du vent à dix mètres.
- la quantité et l'intensité des précipitations,
- l'humidité relative de l'air,
- la température sous abri et à 10 mètres,
- la pression atmosphérique,
- la visibilité et la durée d'insolation (ces paramètres sont exploités depuis 1997 mais ne font pas l'objet de statistiques annuelles sur le site).

3.1.2. **SODAR**

En complément de la station MIRIA, le système SODAR enregistre de 75 à 200 mètres d'altitude, par pas de 25 mètres :

- la vitesse et la direction du vent,
- la turbulence de l'air.

Bilan météorologique 2023

Température de l'air sous abri

La mesure de la température est effectuée à l'aide d'une résistance de platine dont la réponse est linéaire entre -30°C et +50°C avec une précision de 0,1°C.

Température	Année 2023	Historique 1987 - 2023
Moyenne annuelle	11,6°C	10,8°C
Moyenne mensuelle Maximale Minimale	17,5°C en juillet et août 6,8°C en janvier et février	18,3°C en août 2003 1,3°C en janvier 1987
Absolue maximale minimale	28,5°C en septembre 0°C en janvier	32,8°C en juillet 2022 - 10,5°C en janvier 1987

Pluviométrie

La pluviométrie est mesurée à l'aide d'un transducteur à augets basculant avec une précision de $\pm\,4\,$ % sur la quantité de pluie.

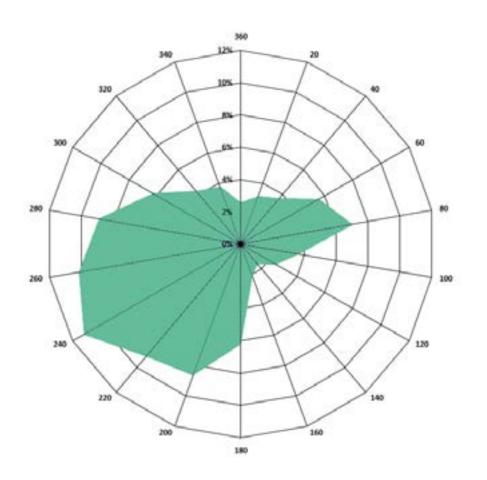
La hauteur de pluie maximale enregistrée a été de 68 mm le 28 octobre 1966. Une journée est comptabilisée lorsque la hauteur d'eau mesurée sur 24 heures (de 9 h TU à 9 h TU) est supérieure à 0,2 mm (seuil de détection du pluviomètre).

	Année 2023	Historique 1964 - 2023
Précipitations annuelles	1 137,8	Moyenne: 971,9 maxi: en 1994, 1265,4 mini: en 1983, 701,2
Précipitations mensuelles maximales minimales	232 en novembre 19,8 en juin	265,8 en octobre 2020 2,1 en juin 1975
Précipitations journalières maximales	37,8 le 1 aout	68 le 28 octobre 1966
Nombre de jours de pluie annuel	229	Moyenne : 201 maxi : en 1994, 264 mini : en 1971, 137
Nombre de jours de pluie mensuel maximales minimales	27 en décembre 9 en juin	30 en janvier 1986 et 2014 2 en août 1976

Vents

La vitesse du vent est mesurée à l'aide d'un générateur de courant électrique proportionnel à la vitesse du vent. Sa gamme de mesure est de 0,4 - 80 m/s avec une précision de 0,1 m/s.

La direction du vent est associée à une valeur de résistance (rhéostat) dont la précision est de 10 % pour une vitesse de vent supérieure à 0,4 m/s.


La direction du vent est par définition la direction de la provenance du vent.

Vents - Année 2023

	janvier	février	mars	avril	mai	juin	juillet	août	septembre	octobre	novembre	décembre
Vitesse moyenne (m/s)	3,7	2,9	4,9	1,7	4,2	3,4	3,9	2,8	2,3	3,1	3,6	4,9
Vitesse maximale (m/s)	17,0	12,7	18,4	15,8	14,6	14,1	14,6	15,2	15,0	16,2	19,5	17,8

Rose des vents 2023

Surveillance radiologique, le point zéro

Les techniques utilisées à cette époque n'étaient pas aussi sophistiquées que celles d'aujourd'hui. Seules les mesures d'activité globale bêta et du potassium total étaient effectués. La teneur en potassium permet de connaître la teneur théorique en potassium 40 (radioélément naturel) de l'échantillon.

En soustrayant ces deux valeurs, on pouvait faire une évaluation de la radioactivité artificielle de l'échantillon.

À noter que 1965 correspond à une période où les essais militaires nucléaires atmosphériques étaient encore largement pratiqués. Pour la seule année 1962, les États-Unis ont pratiqué 39 essais aériens, l'Union Soviétique, 78. En 1965, la Chine pratiquait, elle aussi, un essai nucléaire atmosphérique. Les radionucléides libérés par ces explosions ont induit, à l'échelle planétaire, une augmentation décelable de la radioactivité artificielle.

Patelles (Patella Aspera) :

Les prélèvements provenaient de Vauville, Anse St-Martin, Diélette, Urville, Goury, Écalgrain. 24 échantillons ont été analysés.

% : poids cendre /	Activité bêta (hors K40)	Activité bêta (hors K40)
poids sec	par g de cendres	par kg sec
14,1 %	1,03 Bq/g	145 Bq/kg sec

Algues (Fucus):

15 espèces d'algues ont été analysées en 1965. L'espèce la plus courante sur nos côtes qui a par la suite été retenue pour les plans de surveillance est le fucus. Les prélèvements ont été effectués à Vauville, Diélette, Anse St-Martin, Urville, Goury, Écalgrain. 14 échantillons de fucus ont été analysés.

% : poids cendre /	Activité bêta (hors K40)	Activité bêta (hors K40)
poids sec	par g de cendres	par kg sec
23,4 %	0,89 Bq/g	208 Bq/kg sec

Végétaux (herbes):

12 prélèvements d'herbes ont été analysés en juillet 1965 tout autour de l'établissement, à une distance d'environ 1 km. Les résultats sont présentés ci-dessous.

Des prélèvements ont été également effectués à des distances de 2 à 7 km. Les résultats sont sensiblement les mêmes.

% : poids cendre /	Activité bêta (hors K40)	Activité bêta (hors K40)
poids sec	par g de cendres	par kg sec
4,92 %	35,6 Bq/g	1 752 Bq/kg sec

Végétaux (ajoncs) :

De la même façon que pour l'herbe, des prélèvements ont été effectués au même endroit. Les résultats des prélèvements sont présentés ci-dessous.

% : poids cendre /	Activité bêta (hors K40)	Activité bêta (hors K40)
poids sec	par g de cendres	par kg sec
4,92 %	35,6 Bq/g	1752 Bq/kg sec

Eaux de surface :

Durant le second semestre 1965, 38 prélèvements d'eau de surface ont été analysés. Concernant la radioactivité artificielle, les résultats sont les suivants.

Cs137	7,8 mBq/L
SrY90	37 mBq/L

l ait .

Des mesures de SrY90 sur le lait ont donné une valeur de 1,33 Bq/L. La radioactivité naturelle du lait en potassium 40 est d'environ 50 Bq/L.

Contrôles, essais périodiques **et maintenance**

Outre les contrôles liés directement à l'exploitation des installations, d'autres contrôles et essais périodiques répondant à des critères de sûreté, de sécurité (aspect réglementaire), de qualité produit et de disponibilité des installations sont également planifiés. La réalisation de ces contrôles est généralement effectuée par les

La realisation de ces controles est generalement effectuee par les équipes de maintenance qui en assurent elles-mêmes l'exécution ou la maîtrise d'ouvrage.

La réalisation de ces opérations de contrôles et de maintenances fait l'objet d'un suivi particulier de l'Autorité de sûreté nucléaire.

5.1.2. CONTRÔLES PROCÉDÉ

Outre les contrôles analytiques, la surveillance des installations comporte un nombre important de contrôles systématiques portant essentiellement sur des mesures de pression ou dépression, de niveau, de densité, de température, de débit et d'activité radiologique. Les points, nature et périodicité de ces relevés sont définis dans les documents d'exploitation mis à disposition des équipes chargées de la conduite.

Pour un certain nombre de points de mesure, le relevé de paramètres par un opérateur permet de prendre en compte une dérive imprévue.

L'opérateur dispose pour cela d'un cahier de marche d'unité qui constitue un historique de la mesure. En cas de difficulté, il prévient le chef de quart qui, après analyse, fait engager les actions correctives.

La marge de manœuvre de l'équipe, chargée de la conduite, est définie dans les modes opératoires et les consignes permanentes ou particulières. Lorsque la sûreté de l'installation peut être mise en cause, ou lorsque le traitement du défaut dépasse la compétence de l'équipe de conduite, l'installation est mise en sécurité selon les modes opératoires applicables, et le chef d'installation ou la personne assurant sa permanence est immédiatement informé.

5.1.3. VOIES DE MESURE NUCLÉAIRES « PROCÉDÉ »

Outre la surveillance continue de ces installations inhérente à leur fonctionnement, toutes les voies de mesures d'activité liées au procédé sont soumises à des contrôles périodiques selon les périodicités allant de 6 mois à un an.

Les contrôles périodiques de ces installations sont confiés aux équipes de maintenance et sont réalisés selon des modes opératoires spécifiques à chaque installation.

Une visite complète comporte :

• la vérification du rendement de l'appareil de détection soit à l'aide d'une source étalon pour les appareils destinés à une mesure absolue de l'activité, soit par des mesures relatives pour les autres,

- le contrôle des reports d'information en salle de conduite,
- le contrôle des alarmes et asservissements associés.

5.1.4. APPAREILS DE RADIOPROTECTION

Cette rubrique concerne notamment les contrôles des dispositifs de détection des rayonnements, de signalisation et d'alarme prescrits par l'arrêté du 21 mai 2010 (Annexe 2 qui décrit le cadre et les modalités des contrôles des instruments et le tableau 4 de l'Annexe 3 qui précise la périodicité de ces contrôles).

PLUS D'INFORMATIONS SUR www.asn.fr

Les conditions d'exécution des contrôles font l'objet de procédures ou modes opératoires spécifiques à chaque type de matériel.

D'une manière générale, ces contrôles consistent à vérifier :

- le bon fonctionnement,
 l'étalonnage et les rendements des appareils,
- les correspondances entre les valeurs lues sur les appareils et celles enregistrées au Tableau de Contrôle Radiologique (TCR),
- le déclenchement des alarmes aux différents seuils.
- le fonctionnement des signalisations sonores et lumineuses, locales et centralisées,
- les systèmes de transmission entre les balises et le TCR.

La réalisation des tests est assurée par le personnel de radioprotection.

Le résultat des tests effectués sur un appareil figure sur une fiche récapitulative conservée pour une durée minimale d'un an par le secteur radioprotection.

5.1.5. VENTILATION

Les installations de ventilation des bâtiments nucléaires sont placées sous la surveillance permanente des équipes de conduite.

Des essais sont réalisés périodiquement par l'exploitant ou les équipes de maintenance dédiées tel que prévus dans le référentiel d'exploitation.

De plus des visites systématiques sont faites dans le cadre de la Maintenance préventive par DETR/T ou DEMC/CR.

Concernant les filtres, des essais annuels « in situ » d'efficacité des filtres de dernière barrière sont réalisés par l'entité de maintenance (DEMC/CR) en plus des mesures de colmatage effectuées mensuellement par les équipes d'exploitation.

L'efficacité des filtres de dernière barrière des effluents radioactifs gazeux est réalisée au moins une fois par, an elle est basée sur un test à l'uranine de façon à vérifier que le coefficient d'épuration n'est pas être inférieur à 1 000 (ce coefficient correspond à l'efficacité de filtration).

Le contrôle in situ de l'efficacité des filtres Très Haute Efficacité de dernière barrière est effectué :

- après tout remplacement de filtres de dernière barrière,
- et au moins une fois par an.

5.1.6. APPAREILS DE CONTRÔLE ET DE SURVEILLANCE DES REJETS D'EFFLUENTS RADIOACTIFS GAZEUX ET LIQUIDES

Les contrôles périodiques des appareils de mesure des rejets d'effluents radioactifs gazeux sont prescrits au tableau n° 4 de l'annexe 3 à la décision n° 2010-DC-0175 de l'Autorité de sûreté nucléaire du 4 février 2010 précisant les modalités et les périodicités prévus aux articles R.4452-12 et R.4452-13 du code du travail ainsi qu'aux articles R.1333-7 et R.1333-95 du code de la santé publique.

La Décision ASN 2015-DC-0535 fixe la fréquence minimale de maintenance de ces appareils à un mois.

Les conditions d'exécution de ces vérifications font l'objet de procédures et modes opératoires spécifiques aux différents types d'appareils. D'une manière générale, les contrôles systématiques effectués sur ces appareils consistent à vérifier leur étalonnage à l'aide des sources étalons fournies par un organisme accrédité (ex : CERCA LEA).

L'exploitation et les vérifications de ces appareils sont assurées par le personnel de radioprotection. Les résultats des tests et vérifications d'étalonnages figurent sur les registres de contrôle qui sont transmis mensuellement à l'Autorité de sûreté nucléaire.

Ces contrôles concernent les appareils installés dans les émissaires gazeux, dans les stations villages ainsi que sur les exutoires aux ruisseaux.

Contrôles spécifiques

5.2.1. PRÉLÈVEMENT D'EAUX

Barrage des Moulinets

Nature du contrôle	Fréquence
Le barrage fait l'objet d'une surveillance suivant le décret 2015-526 du 12/05/2015, modifiant les Art R.214- 112 à Art R.214-131 du code de l'Environnement.	Visite de surveillance une fois par an
L'Étude de Dangers (EDD) a été réalisée en 2010 La prochaine est programmée en 2025.	1 fois tous les 15 ans

5.2.2. REJETS GAZEUX DES CENTRALES DE PRODUCTION DE CALORIE (CPC, CPCF)

Nature du contrôle	Fréquence
SO ₂ : Vérification de la mesure et des reports associés	1 fois par an
NOx : Vérification de la mesure et des reports associés	1 fois par an
Poussières : Vérification de la mesure et des reports associés	1 fois par an

5.2.3. DÉVERSEMENT DANS LES RUISSEAUX

Eaux pluviales

Nature du contrôle	Fréquence
Vérification de la mesure de débit et des reports associés	Tous les 6 mois
Vérification de la mesure de pH et des reports associés	1 fois tous les trois mois

EAUX USÉES INDUSTRIELLES ET DOMESTIQUES (GUW)

Nature du contrôle	Fréquence
Vérification de la mesure de débit et des reports associés	1 fois par an
Vérification de la mesure de pH et des reports associés	1 fois tous les trois mois

5.2.4. EFFLUENTS A ET V

STE2 - STE3

Nature du contrôle	Fréquence
Vérification de la gamme de mesure de niveau des cuves de réception (STE3)	1 fois par an
Vérification du seuil de niveau haut dans les lèchefrites (détection de fuite)	1 fois par an
Vérification de la mesure et du seuil bas sur la mesure de vitesse des agitateurs des cuves de réception (STE3)	1 fois par an
Vérification des seuils de commande alarme irradiation sur conduite (arrêt des pompes de rejet)	2 fois par an
Vérification de la mesure de débit de rejet	1 fois par an

T2 – R2

Nature du contrôle	Fréquence
Mesures de niveau pour relevage de la nappe par les pompes Vérification du seuil et du report d'alarme (T2D)	1 fois par an
Contrôle et étalonnage de la mesure gamma sur la tuyauterie de rejet des effluents liquides	1 fois par an
Mesure de débit : contrôle des mesures de niveau des cuves, étalonnage du transmetteur, vérification du report de seuil	1 fois par an
Filtres à bougie sur la ligne de rejet : démontage, nettoyage, échange standard	Maintenance corrective

5.2.5. EFFLUENTS GR

Nature du contrôle	Fréquence
Mesure de niveau : vérification du calage du seuil et des reports associés	1 fois par an

5.2.6. CONDUITE DE REJETS

La conduite de rejet en mer fait l'objet d'un contrôle et d'une maintenance annuelle.

La conduite marine mesure environ 4 900 m; son extrémité (point M4) est située à 1,8 km du rivage par environ 30 m de fond. Elle est constituée de tronçons, longs de 30 à 36 m, réalisés à partir de tubes (diamètre extérieur: 273 mm, épaisseur: 15,06 mm) de longueur 10 à 12 m soudés entre eux. Les tronçons sont assemblés par brides de 16 boulons (diamètre 27 mm) équipées d'un joint polymère.

Le premier tronçon de la conduite de rejet a été remplacé par une tuyauterie souple (Coflexip), protégée par un fourreau en acier ; cet ensemble est complété par une protection radiologique constituée de cavaliers en béton.

Les 40 premiers tronçons (à partir du rivage), sont fixés sur 82 chaises d'appui.

Puis, la conduite repose sur le fond, maintenue par des blocs de lestage.

Des coquilles de protection ont été placées au droit des affleurements rocheux et des supports intermédiaires ont été implantés lorsque la portée entre les points d'appui de la conduite excédait 25 m.

La pérennité de l'ouvrage est assurée par des protections mécaniques et cathodiques.

Travaux

L'inspection de l'ouvrage, lors de la campagne annuelle comprend les points suivants :

- test d'étanchéité par traceur coloré (éosine),
- examen visuel de l'ensemble de l'ouvrage,
- examen visuel de chaque tronçon, des brides, des boulons et de la gaine PVC,
- vérification de l'état du revêtement composite par dépose de la gaine PVC de certains tronçons,
- examen visuel de toutes les chaises et supports,
- vérification de l'état de la protection cathodique,
- relevé du profil des cavaliers de protection.

Les travaux de maintenance, en fonction des observations effectuées peuvent concerner :

- le remplacement d'anodes,
- le recalage de blocs de lestage,
- le remplacement des filtres en M4,
- le changement de coquilles d'usure,
- le recalage de blocs de lestage,
- le relevé du profil de l'émissaire marin par bathymétrie

5.2.7. APPAREILS DE LABORATOIRES

Les appareils servant aux analyses radiologiques des échantillons de surveillance de l'environnement et des rejets font l'objet d'un suivi régulier, conformément à la norme NF EN ISO/CEI 17025 « Exigences générales concernant la compétence des laboratoires d'étalonnages et d'essais ».

Ce suivi métrologique consiste tout d'abord en un étalonnage avec raccordement par rapport aux étalons nationaux.

Ils font ensuite l'objet d'une vérification périodique au moins mensuelle dont les résultats sont retranscrits dans les registres réglementaires mensuels.

Tous les protocoles et périodicités de vérification et d'étalonnage ont été soumis à l'approbation de l'Autorité de sûreté nucléaire.

Tout le parc de matériel bénéficie enfin d'un contrat de maintenance préventive et/ou corrective, géré par le secteur Maintenance Moyens Communs de la Direction Exploitation Moyens Communs.

ESTIMATION DES PRÉLEVEMENTS ET CONSOMMATIONS D'EAU ET DES REJETS D'EFFLUENTS POUR L'ANNÉE 2023

La présente note a pour objet de répondre à l'Article 4.4.3 de l'Arrêté du 7 février 2012, dit « Arrêté INB »

1. OBJET

« l. . — À partir de la programmation des activités ou des opérations susceptibles de provoquer des rejets d'effluents, l'exploitant définit annuellement une prévision chiffrée des prélèvements et consommations d'eau et des rejets d'effluents auxquels il compte procéder. Cette prévision est communiquée à l'Autorité de sûreté nucléaire et à la commission locale d'information au plus tard le 31 janvier de chaque année. »

Les prévisions de prélèvements et de rejets sont réalisées pour les paramètres qui disposent de limites annuelles. Les valeurs limites de rejets liquides et gazeux (actifs et inactifs) de l'Etablissement AREVA NC de la Hague sont définies par l'arrêté du 11 janvier 2016 portant homologation de la décision n° 2015-DC-0536 modifiée par la Décision 2022-DC-0724 de l'Autorité de sûreté nucléaire du 22 décembre 2015.

Ces prévisions tiennent compte du programme de traitement prévu (liste des combustibles prévus d'être traités en 2022), des opérations prévues dans le cadre des projets RCD/MAD/DEM et du retour d'expérience des années précédentes.

2. LA GESTION DES REJETS RADIOLOGIQUES

Le principe ALARA, l'application des meilleures technologies disponibles et les caractéristiques de certains radionucléides ont conduit à privilégier les choix de gestion des rejets suivants :

- Pour le **Tritium**, il n'existe pas de technologie industriellement viable pour concentrer l'eau tritiée en Tritium (forme sous laquelle se présente ce radionucléide sous forme liquide). De plus, il n'existe pas de conditionnement fiable permettant de confiner le Tritium sur le long terme. Ceci a conduit à privilégier le rejet en mer, où la dilution physique et isotopique très importante conduit à l'impact minimal, comme la meilleure option de gestion disponible.
- Pour l'Iode 129, radionucléide très soluble et mobile, difficile à confiner à long terme, le rejet en mer sous forme d'effluent liquide est considéré comme la meilleure option de gestion disponible. En effet, la dilution physique et isotopique en mer est très importante et permet un impact local, et a fortiori un impact plus lointain, bien plus faible que celui résultant de toute autre méthode.
- Pour le **Carbone 14**, la gestion actuelle de ce radionucléide sur le site de La Hague consiste en un piégeage partiel par la solution de soude utilisée pour piéger l'lode et l'envoi à la mer de l'ensemble pour environ un tiers de l'inventaire en Carbone 14 entrant, le reste étant rejeté à l'atmosphère. Concernant le Carbone 14, l'évaluation de l'activité de ce radioélément contenu dans le combustible présente une incertitude plus importante que pour les autres radioéléments.
- Pour le **Krypton 85**, compte tenu d'une part, de sa faible toxicité (il ne se fixe pas dans l'organisme, ni sur la flore et la faune), du fait qu'il n'est pas susceptible de se concentrer dans la chaîne alimentaire (gaz rare qui ne se combine pas avec les autres substances) et d'autre part, des risques associés à sa capture et à son entreposage, le rejet total à l'atmosphère correspond à la meilleure option de gestion dans l'état présent des technologies disponibles.
- Pour les **autres radionucléides**, Orano poursuit dans sa voie de réduction des rejets en mettant en œuvre les meilleures techniques disponibles à un coût acceptable.

La gestion des rejets s'inscrit donc dans une démarche de progrès continu visant à garantir l'absence d'impact sanitaire sur les populations.

3. PROGRAMME PRÉVISIONNEL 2023 DE TRAITEMENT DES COMBUSTIBLES ET CARACTÉRISTIQUES 3.1. PROGRAMME DE TRAITEMENT

Le programme prévisionnel de traitement de l'année 2023 porte sur un total de 975 tonnes de combustibles irradiés représentant une production électrique d'environ 39 GWe.an.

Type de combustible	Taux de combustion MWj/t	Temps de refroidissement en années	Tonnes
PWR 900	44 145	7,0	374
PWR 1300	44 319	8,3	410
PWR 1450	42 045	7,4	175
PWR	52 968	6,1	16
TOTAL			975

3.2. ACTIVITÉS DES PRINCIPAUX RADIOÉLÉMENTS

Le tableau ci-dessous présente les activités estimées en TBq des principaux radionucléides présents au 01/01/2023 dans les combustibles envisagés pour le traitement en 2023.

Kr 85	2,51, 105	TBq
C 14	18	TBq
I 129	1,40	TBq
Tritium	1,69, 104	TBq
Ru 106	2,44, 105	TBq

Nota: Les valeurs indiquées dans le tableau ci-dessus du combustible à traiter sont les valeurs calculées par le code CESAR version 5.

4. PRÉVISION DES PRÉLÈVEMENTS D'EAU 4.1. MÉTHODOLOGIE

L'eau prélevée à usage industriel provient du barrageréservoir des Moulinets. Les prévisions de prélèvements d'eau dans le barrage des Moulinets sont basées sur les quantités d'eau prélevées des années antérieures.

4.2. ÉVOLUTIONS

Sans objet.

4.3. PRÉVISION DE PRÉLÈVEMENTS

Ce tableau présente les prévisions de prélèvements d'eau au niveau du barrage des Moulinets pour l'année 2023. Le volume estimé pour l'année 2023 correspond à la moyenne des volumes d'eau prélevés entre 2011 et 2022.

Année	Volume d'eau prélevé (m³)
2011	497 575
2012	545 859
2013	403 207
2014	414 194
2015	510 174
2016	424 459
2017	473 584
2018	509 122
2019	548 299
2020	504 423
2021	530 043
2022 (fin novembre)	543 211
2023	492 013

5. PRÉVISION DES REJETS RADIOLOGIQUES GAZEUX

5.1. MÉTHODOLOGIE

5.1.1. Krypton 85, Tritium, Iodes (129, 131, 133), Carbone 14

Les prévisions des rejets gazeux sont basées sur les performances constatées lors des années antérieures exprimées sous la forme du rapport entre l'activité entrée et l'activité rejetée, dénommé Rgaz.

Pour le Krypton, le rapport Rgaz est égal à 1 car il n'y a

aucun piégeage.

PERFORMANCES RGAZ

Le tableau ci-dessous présente les performances Rgaz constatées pour les rejets gazeux concernant les éléments Tritium, lodes et Carbone 14, pour les années 2013 à 2021, et pour l'année 2022 (sur les 10 premiers mois) ainsi que les estimations pour l'année 2023.

Tritium		Gazeux	
Bq	Total entrée	Total Rejet	Rgaz
2015	1,96. 10 ¹⁶	7,83. 10 ¹³	250
2016	1,90. 1016	7,45. 10 ¹³	254
2017	1,77. 10 ¹⁶	7,16. 10 ¹³	247
2018	1,78. 10 ¹⁶	6,02. 10 ¹³	295
2019	2,06. 1016	6,59. 10 ¹³	313
2020	1,74. 1016	5,80. 1013	300
2021	1,61. 10 ¹⁶	5,38. 1013	299
Nov. 2022	1,50. 10 ¹⁶	4,43. 10 ¹³	340
2023			290
I 129		Gazeux	
Bq	Total entrée	Total Rejet	Rgaz
2015	1,74. 1012	4,41. 10 ⁹	394
2016	1,56. 10 ¹²	5,36. 10 ⁹	291
2017	1,43. 1012	5,32. 10 ⁹	269
2018	1,46. 1012	8,59. 10 ⁹	169
2019	1,79. 1012	5,41. 10 ⁹	331
2020	1,48. 1012	4,56. 10 ⁹	326
2021	1,45. 1012	5,53. 10 ⁹	225
Nov 2022	1,23. 10 ¹²	4,66. 10 ⁹	265
2023			300
C14		Gazeux	
Bq	Total entrée	Total Rejet	Rgaz
2015	2,23. 1013	1,95. 10 ¹³	1,15
2016	1,99. 10 ¹³	1,91. 10 ¹³	1,04
2017	1,82. 1013	1,66. 10 ¹³	1,10
2018	1,85. 10 ¹³	1,82. 10 ¹³	1,02
2019	2,29. 1013	1,95. 10 ¹³	1,18
2020	1,88. 1013	1,71. 1013	1,10
2021	1,83. 1013	1,62. 1013	1,13
Nov. 2022	1,56. 10 ¹³	1,30. 10 ¹³	1,19
2023			1,10

Les évolutions des valeurs des rapports Rgaz retenues pour 2023 sont :

- Tritium =290 : pas d'évolution
- lode = 300 : légère diminution suite au REX des années précédentes
- Carbone 14 = 1,10 : pas d'évolution

5.1.2. Autres émetteurs bêta gamma artificiels

Les rejets des autres émetteurs bêta-gamma artificiels sont influencés par le Ruthénium 106 et son fils le Rhodium 106 venant des ateliers de vitrification. La meilleure estimation de rejet retenue est de 0,10 GBq. Le tableau ci-dessous présente les valeurs des rejets pour les années précédentes, utilisées pour déterminer la prévision 2023.

Année	Rejets autres émetteurs bêta gamma Bq/an
2015	9,5. 10 ⁷
2016	1,0. 10 ⁸
2017	1,06. 10 ⁸
2018	1,03. 10 ⁸
2019	1,11. 10 ⁸
2020	1.00. 10 ⁸
2021	1,01. 10 ⁸
2022	1,01. 10 ⁸
2023	0,1 GBq

5.1.3. Émetteurs alpha artificiels

Ces rejets restent faibles et constants, la valeur retenue pour 2023 : 0,5 MBq.

5.2. ÉVOLUTIONS OPÉRATIONNELLES

Ces rejets restent faibles et constants, la valeur retenue pour 2023 : 0,5 MBq.

5.3. ÉVOLUTIONS PRÉVUES

Pour 2023, l'émissaire du bâtiment NCPF T2 doit être mis en actif.

Une campagne de changement des filtres zéolithes sur l'atelier T1 est prévue.

5.4. PRÉVISIONS DES REJETS GAZEUX

Estimation rejets gazeux pour l'année 2023	Activité ⁽¹⁾ dans le combustible (TBq)	Rgaz	Prévisions de rejet (TBq)	Décision 2015-DC-0536 modifiée par la Décision 2022-DC-0724 (TBq)	% autorisation (Décision 2015- DC-0536) modifiée par la Décision 2022-DC-0724)
Gaz rares radioactifs dont 85Kr	2,51.10 ⁵	1	2,51.105	4,70.10 ⁵	54
Carbone 14	18	1.10	16	28	57
Iodes (iode 129 et 10 % pour iode 131 et 133)	1,54	300	5.21.10-3	0,018	29
Tritium	1,69.104	290	59	150	40
Autres émetteurs béta gamma	_	-	0,0001	0,001	10
Autres émetteurs alpha	-	-	0,0000005	0,00001	5

(1): activité César 5 au 1/1/2023

6. PRÉVISION DES REJETS RADIOLOGIQUES LIQUIDES

6.1. MÉTHODOLOGIE

La typologie des rejets radioactifs liquides est liée :

- Au programme de traitement pour des radioéléments tels que le Tritium, le Carbone 14 et les lodes, dirigés préférentiellement pour les raisons explicitées ci-dessus vers l'exutoire marin.
- Aux recyclages et traitements de l'atelier STE3 pour les autres radioéléments.

Les prévisions des rejets liquides sont basées sur les performances constatées lors des années antérieures exprimées sous la forme du rapport entre l'activité entrée et l'activité rejetée, dénommé Rliq.

Tritium		Liquide	
	Total entrée	Total Rejet	Rliq
2015	1,96. 1016	1,37. 10 ¹⁶	1,43
2016	1,90. 1016	1,23. 1016	1,54
2017	1,77. 10 ¹⁶	1,19. 10 ¹⁶	1,48
2018	1,78. 1016	1,14. 10 ¹⁶	1,56
2019	2,06. 1016	1,32. 1016	1,56
2020	1,74 1016	1,14. 10 ¹⁶	1,53
2021	1,61. 1016	1,00. 1016	1,61
Nov 2022	1,50. 1016	1,00. 1016	1,50
2023			1,5
I 129		Liquide	
	Total entrée	Total Rejet	Rliq
2015	1,74. 1012	1,64. 1012	1,06
2016	1,56. 10 ¹²	1,44. 1012	1,08
2017	1,43. 1012	1,28. 1012	1,12
2018	1,46. 1012	1,31. 10 ¹²	1,11
2019	1,79. 1012	1,71. 1012	1,05
2020	1,48. 1012	1,24. 1012	1,20
2021	1,45. 1012	1,23. 1012	1,18
Nov.2022	1,23. 1012	1,15. 10 ¹²	1,07
2023			1,10
C14		liquide	
	Total entrée	Total Rejet	Rliq
2015	2,23. 1013	8,52. 10 ¹²	2,62
2016	1,99. 1013	7,55. 1012	2,64
2017	1,82. 1013	7,33. 1012	2,49
2018	1,85. 10 ¹³	7,62. 10 ¹²	2,43
2019	2,29. 1013	8,42. 1012	2,72
2020	1,88. 1013	7,44. 1012	2,53
2021	1,83. 10 ¹³	6,97. 1012	2,63
Nov. 2022	1,56. 10 ¹³	6,23. 1012	2,50
2023			2,60

Pas d'évolution pour les Rliq en 2023.

6.2. ÉVOLUTIONS OPÉRATIONNELLES

La prévision en rejet de Ruthénium 106 et de Rhodium 106 (contributeur principal des rejets des autres émetteurs bêtagamma) prend en compte que la majeure partie des concentrats des effluents basiques (CEB) entreposés en 2022 dans les ateliers R2 et T2 sera traitée, courant 2023, comme effluents dans l'atelier STE3.

 Depuis 2014, les effluents produits par l'atelier de vitrification l'atelier R7 peuvent être envoyés vers les capacités évaporatoires d'UP2-400 (accord exprès CODEP-DRC-2022-051148). Une demande de prolongation de l'exploitation de cette ligne de transfert a été demandée jusqu'au 31 décembre 2024 (ELH-2022-033976).

6.3. ÉVOLUTIONS PRÉVUES

- La mise en service opérationnelle de l'évaporateur R7 est prévue début 2023 à cadence réduite.
- La mise en place du dévoiement des eaux du drain R4 vers le réseau d'eau pluviale.
- La mise en service d'une liaison entre STE3 vers T2 pour le traitement des effluents est prévue fin 2023.

6.4. REJETS LIÉS AUX OPÉRATIONS DE PRÉPARATION DES ACTIVITÉS MAD/DEM DE L'USINE UP2-400

6.4.1. Atelier HADE

Les opérations de MAD/DEM prévues d'être réalisées sur l'atelier HADE en 2023 et susceptibles de générer des effluents sont les suivantes :

- Assainissement et démantèlement des mélangeurs décanteurs (unités 232 et 233) ;
- Démantèlement des cuves de réception et démantèlement de l'ensemble mélangeurs- décanteurs et filtre de l'unité 250 ;
- Assainissement des équipements lot 2 (unité 223) et assainissement des équipements (unité 231).

En 2023, les opérations d'assainissement génèreront 3 m³ d'effluents qui seront envoyés à la concentration

6.4.2. Atelier HAO Sud

Les opérations de MAD/DEM prévues d'être réalisées sur HAO Sud en 2023 et susceptibles de générer des effluents sont les suivantes :

- DEM salle 813 et environnement, pour la vidange et l'assainissement de la piscine 907. Les opérations généreront :
- 220 m³ d'effluents destinés aux capacités évaporatoires ;
- 26 m³ d'effluents A.

6.4.3. Atelier MAPu

L'opération de MAD/DEM prévues d'être réalisée sur l'atelier MAPu en 2023 et susceptible de générer des effluents est :

• DEM et assainissements des cellules 900, avec le démantèlement des cellules 814, 819, 912, 921, 933, 936, 953, 954, 984 et 990.

Les opérations généreront 9 m³ d'effluents qui seront traités sur les capacités évaporatoires.

6.4.4. Atelier MAU

L'opération de MAD/DEM prévues d'être réalisée sur l'atelier MAU en 2023 et susceptible de générer des effluents est :

- Vidange et assainissements de la cuve 308-16.
- Traitement de la ventilation MD Assainissement GC et déclassement radiologique et déchets des locaux 700 et 600.

Les opérations généreront 1 m³ d'effluents qui seront traités sur les capacités évaporatoires.

6.4.5. Atelier Elan IIB

En 2023, il n'y a pas d'opérations prévues entrainant la production d'effluents liquides.

6.4.6. Atelier HAPF/SPF

Les opérations de MAD/DEM prévues d'être réalisées sur l'atelier HAPF en 2023 et susceptibles de générer des effluents sont les suivantes :

- Effluents générés par la Chaîne A HAPF + SPF1
- Effluents générés par la boucle de rinçage n°2 (SPF 2).

En 2023, dans le cadre des rinçages, 190 m³ d'effluents R seront générés. Ces effluents proviennent des rinçages à l'acide oxalique et de rinçage à l'acide nitrique.

Les effluents générés seront traités sur les capacités évaporatoires

6.4.7. Zone Nord-Ouest

Les opérations d'assainissement de la Zone NO sont susceptibles de générer des effluents en 2023. Ces opérations sont prévues de 2022 à 2025.

L'ensemble des opérations d'assainissement de la Zone NO générera sur la période une quantité négligeable d'effluents.

6.4.8. Bâtiment Filtration 907

L'opération de MAD/DEM réalisées sur le bâtiment Filtration en 2023 et susceptibles de générer des effluents est la suivante :

• DEM Partie Basse pour un envoi vers le silo HAO (chasse matière de la cuve 1620-30) Les opérations généreront 8 m³ d'effluents qui seront traités sur les capacités évaporatoires.

6.4.9. Atelier STE 2

Aucune opération prévue en 2023 ne génère des effluents.

6.4.10. Filière ECE-Silo 130

La filière ECE a en charge la préparation des fûts ECE pour les différents projets de l'établissement de la Hague (silo HAO, silo 130, silo 115 et reprise curseur du SOC) qui prévoient d'utiliser ces fûts comme contenant pour leurs déchets produits. Les effluents générés par cette filière sont générés sur ACC.

En 2023, les opérations génèreront 20 m³ d'effluents V.

6.5. REJETS LIÉS AUX OPÉRATIONS DE RCD

6.5.1. Reprise des concentrats de PF UMo

La production de CSD-U pour traiter les concentrats UMo s'est terminée en 2020.

6.6. EFFLUENTS D'EXPLOITATION/SURVEILLANCE D'UP2 400

Les effluents d'exploitation sont issus de la surveillance des bâtiments de l'usine UP2-400.

	E	ffluents 2023 (1	n ³)
		exploitation surveillance	
	V	А	R
MAU	50		20
MAPu	2 000		
HADE (*)	8 000		15
DEG	120	120	200
SOC PLH			
SOD			
Caniveaux			
Bâtiment filtration			
Silo HAO			
HAO Nord			
HAO Sud			144
HAPF rinçages			
HAPF	2 000		550
Zone NO			
STE 2			
ELAN 2B	16		
Total	12 200	120	930

^{(*):} correspond aux distillats de NCP 1 (effluent de recyclage BUR très majoritairement)

6.7. SYNTHÈSE DES EFFLUENTS DES ACTIVITÉS MAD DEM

Environ $150 \, \text{m}^3$ d'effluents A exploitation sont prévus en 2023: ces effluents seront traités sur l'atelier STE3. Environ $1\,400 \, \text{m}^3$ d'effluents seront envoyés sur la filière évaporation concentration dont le facteur de décontamination global est de $1,25.\,106$.

Environ 12 000 m³ d'effluents V issus de l'exploitation des ateliers et des évaporateurs NCP1 sont prévus.

Les opérations MAD DEM génèrent des effluents qui sont orientés préférentiellement vers la filière évaporation/concentration afin de diminuer l'impact de ces opérations.

6.8. PRÉVISIONS DE REJETS LIQUIDES ACTIFS

6.8.1. Rejets liquides actifs courants

Ce tableau comprend l'ensemble des rejets liés aux opérations d'exploitation des usines UP2 800 et UP3 prévus pour 2023 (hors opérations de préparation des activités de MAD DEM de l'usine UP2 400).

Estimation rejets liquides courants pour l'année 2022	Activité dans le combustible (TBq)	Rliq	Prévisions de rejet (TBq)	Décision 2015-DC-0536 modifiée par la Décision 2022-DC-0724 (TBq)	% autorisation (décision 2015-DC-0536 modifiée par la Décision 2022-DC-0724)
Iodes radioactifs (iode 129)	1,4	1,1	1,3	2,6	51
Tritium	1,69.104	1,5	1,15.104	18 500	62
Carbone 14	18	2,6	6,9		
Carbone 14 (rejets liquides et gazeux)	18		24,5	42	58
Emetteurs alpha	-	-	0,03	0,07	43
Strontium 90	-	-	0,38	0,6	32
Césium 137	=	-	1,05	1,6	53
Césium 134	=	-	0,09	0,35	18
Ruthénium 106	=	-	2,50	7,5	17
Cobalt 60	-	-	0,10	0,5	11
Autres émetteurs bêta gamma	-	-	2,05	12	7

6.8.2. Rejets liquides liés aux opérations de préparation des activités de RCD/MAD/DEM de l'usine UP2-400

Les activités rejetées par ces opérations sont présentées dans le tableau ci-dessous :

Estimation rejets liquides RCD MAD DEM						
2023 TBq	Prévisions de rejets	Décision 2015-DC-0536 modifiée par la Décision 2022-DC-0724 (TBq)	% autorisation (décision 2015-DC-0536 modifiée par la Décision 2022- DC-0724)			
Sr90	0,02	9,8	0,2			
Cs137	0,05	4	1,3			
Co60	0,05	0,5	10			
Autres bêta gamma	0,95	25	3,8			
Émetteurs alpha	0,010	0,07	14			

6.8.3. Rejets liquides globaux

Ce tableau comprend l'ensemble des rejets liés aux opérations d'exploitation des usines UP2 800 et UP3 prévus pour 2023 et aux opérations de préparation des activités de RCD/MAD/DEM de l'usine UP2 400.

Estimation rejets liquides globaux pour l'année 2022	Activité ⁽¹⁾ dans le combustible (TBq)	Rliq	Prévisions de rejet (TBq)	Décision 2015-DC-0536 modifiée par la Décision 2022-DC-0724 (TBq)	% autorisation (décision 2015-DC-0536 modifiée par la Décision 2022-DC-0724)
Iodes radioactifs (iode 129)	1,4	1,1	1,3	2,6	51
Tritium	1,69 .104	1,5	1,15.104	18 500	62
Carbone 14	18	2,6	6,9		
Carbone 14 rejets liquides et gazeux	18		24,5	42	58
Emetteurs alpha	=	-	0,04	0,14	29
Strontium 90	-	-	0,40	10,4	4
Césium 137	-	-	1,10	5,6	18
Césium 134	-	-	0,09	0,35	18
Ruthénium 106	-	-	2,50	7,5	17
Cobalt 60	-	-	0,15	1	11
Autres émetteurs bêta gamma	-	-	3,00	37	5

^{(1) :} activité César

7. PRÉVISION DES REJETS CHIMIQUES LIQUIDES EN MER

7.1. MÉTHODOLOGIE

Les prévisions de rejets chimiques en mer sont basées sur les flux des éléments rejetés de l'année 2015 à 2022 (jusqu'à novembre inclus).

7.2. ÉVOLUTIONS

Il n'y a pas eu d'évolution en 2022.

7.3. ÉVOLUTIONS OPÉRATIONNELLES

L'entreposage sur STU de l'acide nitrique issu du traitement de nitrate d'uranyle à Pierrelatte permet d'optimiser son utilisation dans le procédé UP2 et de limiter les apports d'acide frais et les rejets nitrates. Courant 2018, la capacité tampon d'entreposage d'acide nitrique reçue depuis Pierrelatte a été utilisée à sa pleine capacité (250m³). En 2023, la mise en actif des nouvelles capacités de stockage de STU devrait être effective.

7.4. Prévision de rejets

Le tableau présente les prévisions de rejets chimiques en mer pour l'année 2023.

Eléments	Prévision de rejet pour 2023 (kg)	Décision 2015-DC- 0536 00536 modifiée par la Décision 2022-DC- 0724 (kg)	% Décision 2015- DC- 0536
Ion nitrate	1 850 000	2 900 000	64
Ion nitrite	37 000	70 000	53
Ammonium	60	300	20

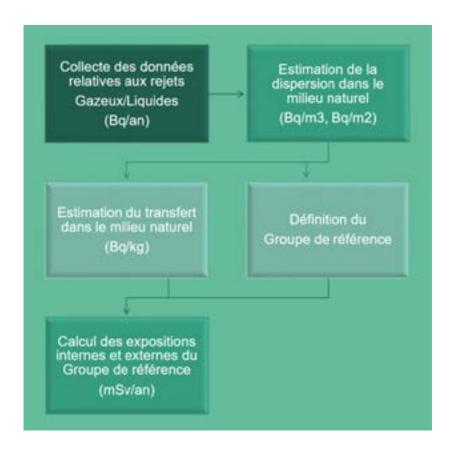
Soufre	6 500	16 000	41
Aluminium	130	260	50
Fer	85	250	34
Nickel	3	25	12
Chrome	2,5	15	17
Baryum	16	85	19
Cobalt	3	30	10
Phosphate de tributyle (TBP)	1 250	2 500	50
Plomb	2	10	20
Hydrazine	5	10	50
Phosphore total	290	1 200	24
Ion fluorure	25	80	31
Mercure	0,15	0,35	43
Zinc	30	80	38
Manganèse	20	50	40
Zirconium	2	5	40
Cadmium	0,7	3	23
DCO	16 000	60 000	27
Antimoine	2	15	13
Argent	1,5	10	15
Arsenic	1,2	5	24
Bore	25	115	22
Cérium	6	769	1
Cuivre	6	15	40
Etain	1	5	20
Molybdène	1	15	7
Sélénium	1	30	3
Titane	1	10	10
Uranium	35	60	58
Vanadium	1	10	10

8. CONCLUSION

Les prévisions de traitement des combustibles pour 2023, des opérations prévues dans le cadre des projets RCD/MAD/DEM et le retour d'expérience d'exploitation des installations permettent d'estimer les prélèvements et consommations d'eau, ainsi que les rejets liquides et gazeux prévisionnels (paramètres radiologiques et chimiques).

Ces estimations sont fondées sur des conditions de fonctionnement en ligne du procédé et n'intègrent pas les aléas ou dysfonctionnements éventuels. Les prévisions sont également fondées sur les prévisions d'activité RCD/MAD/DEM pour l'année 2023.

Ces estimations sont inférieures aux limites fixées par l'arrêté du 16 juin 2022 portant homologation de la


décision 2022-DC-0764 modifiant la décision n° 2015-DC-0536 modifiée par la Décision 2022-DC-0724 de l'Autorité de sûreté nucléaire du 22 décembre 2015 fixant les valeurs limites de rejet dans l'environnement des effluents liquides et gazeux des installations nucléaires de base n° 33 (UP2-400), 38 (STE2 et AT1), 47 (ELAN II B), 80 (HAO), 116 (UP3-A), 117 (UP2-800) et 118 (station de traitement des effluents STE3) exploitées par Orano sur le site de la Hague (département de la Manche).

Ces rejets sont à rapprocher du service énergétique rendu évalué à environ 39 GWe.an pour les combustibles usés prévus d'être traités en 2023 (énergie électrique produite par les réacteurs nucléaires à partir du combustible qui est ensuite traité à l'usine de la Hague).

La méthodologie présentée pour le calcul de l'impact des rejets radioactifs de l'établissement ainsi que les paramètres associés sont ceux issus des travaux du GRNC (Groupe Radioécologie Nord Cotentin) qui ont été formalisés au travers d'un outil informatique (ACADIE) développé conjointement par l'IRSN et Orano. Certains paramètres, détaillés dans cette annexe sont issus de la méthodologie de calcul d'impact présentée dans le dossier d'enquête publique relative à la prorogation de l'allocation spécifique de rejets liquides pour les opérations de RCD MAD DEM, déposé en août 2014.

Évaluation de l'impact des rejets radioactifs de l'établissement

Schéma général du calcul d'impact

L'étude d'impact de l'établissement est réalisée dans le cadre d'un fonctionnement permanent, pour un débit de rejet constant. Les calculs sont basés sur le débit rejeté sur une année, constituant le « rejet de l'usine ». Le calcul doit permettre d'évaluer l'impact sur l'environnement et sur les populations locales.

7.1.1. COLLECTE DES DONNÉES RELATIVES AUX REJETS

Le comportement des éléments rejetés dans le milieu est examiné en fonction de la nature des rejets (liquides ou gazeux):

- rejets gazeux, pour le milieu terrestre,
- rejets liquides, pour le milieu marin.

7.1.2. ESTIMATION DE LA DISPERSION

La dispersion des radioéléments rejetés dans l'environnement est calculée à l'aide d'un modèle physique de dispersion.
La dispersion atmosphérique est un phénomène physique qui diffuse les effluents depuis la cheminée de rejet dans l'atmosphère.
L'effet de la dispersion varie suivant les conditions météorologiques.

Pour le calcul d'impact annuel, les paramètres de dispersion sont issus d'une analyse statistique des conditions météorologiques sur la période 2011-2020.

La dispersion marine se traduit par une dilution à partir du point de rejet, la loi de dispersion étant le résultat de campagnes d'essais et de mesures en Manche Ouest.

7.1.3. ESTIMATION DE LA DISPERSION

Estimation du transfert dans le milieu naturel

7.1.4. GROUPE DE RÉFÉRENCE

L'impact sur les populations est déterminé par leur exposition (ou dose) annuelle. L'évaluation de l'impact dosimétrique par type de rejets (gazeux ou liquides) est faite, par précaution, pour le groupe de population susceptible de recevoir l'impact le plus élevé. Un tel groupe de population est appelé « Groupe de référence ». La définition qu'en donne la directive EURATOM 96/29 de 1996 est la suivante :

« Le groupe de référence de la population est un groupe comprenant des individus dont l'exposition à la source est assez uniforme et représentative de celle des individus qui, parmi la population, sont plus particulièrement exposés à la dite source ».

Dans l'environnement du site de La Hague, nous avons identifié deux groupes de population caractérisés de manière aussi réaliste que possible :

 un groupe plus particulièrement soumis à l'impact des rejets liquides. Ces personnes vivent de la mer et habitent sur la côte. Leur régime alimentaire comporte une ration importante de produits de la pêche mais celles-ci consomment également des produits agricoles. La part d'origine locale de la ration alimentaire est supposée provenir des zones les plus exposées. La part non locale de l'alimenttion n'affecte pas l'évaluation de l'impact, tant pour les produits terrestres que marins,

- un groupe plus particulièrement soumis à l'impact des rejets gazeux. Ces personnes habitent à proximité du site et sont soumises le plus fréquemment au panache des cheminées, compte tenu de la direction et de la fréquence des vents dominants. Leur régime alimentaire comporte une ration importante de produits agricoles mais elles consomment également des produits de la pêche. La part d'origine locale de la ration alimentaire est supposée provenir des zones les plus exposées. La part non locale de l'alimentation n'affecte pas l'évaluation de l'impact,
- afin de simplifier cette évaluaion d'impact, les calculs ont été effectués pour les adultes de ces deux groupes de référence.
- depuis janvier 2023, la décision 2015-DC-0535 de l'Autorité de sûreté nucléaire du 22 décembre 2015, modifiée par la décision 2022-DC-0725 de l'Autorité de sûreté nucléaire du 16 juin 2022, inclut un troisième groupe de référence situé à Herqueville.

7.1.5. CALCULS DES EXPOSITIONS

Les groupes définis ci-dessus peuvent être exposés aux radioéléments par voie externe (exposition externe) et par voie interne (ingestion et inhalation). Dans le cas des expositions internes, des coefficients de dose spécifiques (issus de l'arrêté du 01/09/2003) de chaque radioélément fournissent la dose efficace engagée pour chaque becquerel incorporé. Ces coefficients sont exprimés en Sv/Bq. Lorsque l'on souhaite connaître la dose délivrée à

un organe particulier, les tables de la C.I.P.R. donnent des valeurs de coefficients spécifiques. Dans le cas des expositions externes, les coefficients de dose ne dépendent pas du métabolisme des personnes : en conséquence, ils ne varient pas en fonction de l'âge et une valeur unique est utilisée pour chaque radioélément. En revanche, ces coefficients de dose externe sont fonction de la nature de la source et de la situation dans laquelle se trouve la personne : exposition au panache, à un dépôt au sol pour le domaine terrestre, aux sédiments pour le domaine marin. Ces coefficients sont extraits du « Federal Guidance N°12 » comme préconisé par l'IRSN. Les rejets liquides et les rejets gazeux induits par le fonctionnement des installations de l'établissement se dispersent dans l'environnement. Le transfert vers l'homme intervient selon deux compartiments de l'écosystème :

- le milieu marin,
- le milieu atmosphérique et terrestre.

Mécanismes de transfert vers l'homme

Principales voies de transfert de la radioactivité des rejets liquides vers l'environnement et vers l'homme

7.2.1. MILIEU MARIN

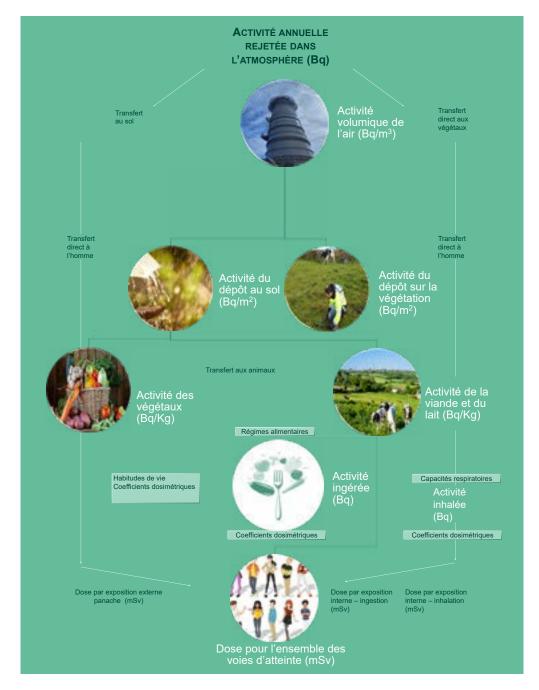
Dans le milieu marin, les éléments rejetés sont en majorité sous forme soluble, mais certains peuvent constituer des colloïdes, se trouver sous forme plus ou moins polymérisée ou se fixer sur des particules solides. Les radioéléments sont assimilés par les organismes en plus ou moins grande quantité selon les espèces marines, en fonction de leur forme chimique et du métabolisme de l'espèce.

Les voies d'atteinte à l'homme par la radioactivité du milieu marin incluent l'ingestion de produits de la pêche et l'exposition externe qui est fonction du mode de vie.

Pour l'ensemble de la population, seules les activités récréatives sur les plages peuvent être considérées. Le léger marquage du sol et de la végétation lié aux embruns, observable uniquement sur des bio-indicateurs (par exemple, les ajoncs) ne constitue pas une voie significative d'atteinte et de transfert au groupe de référence.

La majorité de l'impact sur l'homme pour l'ensemble des radioéléments est attribuable à l'ingestion de produits de la mer, l'exposition externe étant faible.

7.2.2. MILIEU TERRESTRE


Dans le milieu terrestre, le panache de dispersion dans l'atmosphère des éléments rejetés provoque une exposition externe directe et une exposition interne par inhalation.

Le panache est partiellement lavé par la pluie ; ses particules se déposent au sol et sur la végétation. Le dépôt au sol provoque également une exposition externe. En plus du dépôt direct sur la végétation, un transfert indirect s'effectue par absorption foliaire et racinaire. Le ruissellement de l'eau sur les sols peut avoir une influence

sur l'eau d'abreuvage du bétail.

Le second maillon de la chaîne alimentaire est constitué par les animaux qui consomment les végétaux et intègrent dans le lait et la viande les éléments rejetés. L'atteinte à l'homme par ingestion est fonction de sa ration alimentaire.

Pour le milieu terrestre, la majeure partie de l'impact par incorporation sur l'homme est attribuable à l'ingestion des aliments contenant des éléments assimilables par le sol et la végétation. En revanche, les gaz rares qui ne sont pas assimilables sont dispersés dans l'environnement et n'agissent que par exposition externe.

Caractéristiques des groupes de référence

Le partage des rejets radioactifs de l'établissement en deux flux bien distincts, l'un liquide concernant directement l'écosystème marin, l'autre gazeux concernant l'écosystème terrestre amène à définir au moins deux groupes de référence. Ces deux groupes de référence sont définis avec un souci de réalisme, chacun plus particulièrement sensible à l'influence soit des rejets liquides, soit des rejets gazeux.

7.3.1. GROUPE DE RÉFÉRENCE SOUMIS PRINCIPALEMENT AUX REJETS LIQUIDES

Dans le milieu terrestre, le panache Le groupe de référence soumis principalement aux rejets liquides est défini comme un groupe de pêcheurs vivant à Goury, en bord de mer, à 7 km du point de rejet.

L'activité ajoutée à l'eau de mer à Goury est prise en compte pour évaluer l'exposition du groupe. Ce choix s'appuie sur les mesures réalisées dans l'eau de mer en différents points du littoral. Elles sont confirmées par le modèle hydrodynamique de la Manche-Mer du Nord développé par le L. R. C. (Laboratoire de Radioécologie de Cherbourg-Octeville, dans le Nord-Cotentin qui est un laboratoire de l'IRSN).

Ce groupe de pêcheurs est supposé exercer son activité professionnelle à Goury et subir une exposition externe due aux rejets liquides par l'intermédiaire des engins de pêche. Le temps d'exposition estimé, en l'absence de valeur correspondant aux habitudes réelles des pêcheurs du Nord-Cotentin, est d'environ 7 heures par jour, 365 jours par an soit environ 2 400 heures d'exposition aux engins de pêche auxquelles s'ajoutent 100 heures d'exposition aux sédiments de plage.

La ration alimentaire de ce groupe de référence prend en compte des produits de la pêche et des aliments d'origine terrestre. Les quantités annuelles consommées par catégorie d'individus sont issues de l'enquête sur les modes alimentaires dans le Nord-Cotentin, réalisée en avril-mai 1998 par le CRÉDOC (Centre de recherche pour l'étude et l'observation des conditions de vie).

Il est à noter que le GRNC a décomposé en quatre types de viande la consommation (bœuf, mouton, veau, volaille). La répartition retenue par le GRNC a été conservée pour le calcul (respectivement 27,6 %, 2,6 %, 39,5 % et 30,3 % de la consommation annuelle de viande).

 Pour les aliments d'origine marine, sont retenues les quantités correspondant au 95 percentile de la consommation des familles de pêcheurs de la zone Nord et côte Ouest du Cotentin, soit celle des 5 %

- plus gros consommateurs. La consommation considérée correspond à la consommation réelle d'un aliment par le pêcheur, et non pas à une moyenne de consommation sur l'ensemble de la zone qui inclurait les non-consommateurs.
- Pour les aliments d'origine terrestre, sont retenues les quantités correspondant à la moyenne de la consommation des ménages de pêcheurs de la zone Nord-Côte Ouest du Cotentin. La consommation considérée orrespond à la consommation réelle d'un aliment par un individu, et non pas à une moyenne de consommation sur l'ensemble de la zone qui inclurait les non-consommateurs.

Les valeurs considérées sont celles corrigées par des facteurs dits « de saisonnalité » pour chaque aliment, qui pondèrent les valeurs obtenues lors de l'enquête afin de s'affranchir de la période de l'année à laquelle celle-ci s'est déroulée

Seuls les aliments d'origine locale contribueront à l'impact sur le groupe de référence. L'enquête permet de connaître cette part locale de l'alimentation pour l'ensemble du Nord-Cotentin et il est vérifié que l'autoconsommation de la population moyenne du Nord-Cotentin n'est pas supérieure à cette part locale.

L'activité des aliments marins locaux est déterminée en considérant qu'ils sont pêchés à Goury.

L'activité des aliments terrestres locaux est déterminée en supposant qu'ils sont originaires de la zone définie pour le groupe de référence plus particulièrement soumis aux rejets gazeux, représentés par le village de Digulleville (cultures locales des fruits et légumes ; élevages locaux pour le lait et la viande).

Caractéristiques alimentaires retenues pour le groupe des pêcheurs de Goury

Caractéristiques	PêCHEURS DE GOURY consommation alimentaire	
Catégorie	Adultes	Part locale
Aliments	Régime complet (kg/an)	En %
Crustacés	70,9	53,6
Mollusques	14,6	75,3
Poissons	41,7	35,5
Lait	49,8	14,8
Produits laitiers	47,3	20,6
Viande de bœuf	15,1	35,7
Viande de mouton	1,08	35,7
Viande de porc	21,6	35,7
Viande de volaille	16,2	36,5
Légumes feuilles	5,9	57,4
Légumes racines	33,7	54
Fruits	38	11,2
MODE DE VIE	Adultes	
Temps d'exposition aux engins de pêche	2 400 h	
Temps d'exposition aux sédiments de plage	100 h	

7.3.2. GROUPE DE RÉFÉRENCE SOUMIS PRINCIPALEMENT AUX REJETS GAZEUX

Le groupe de référence principalement soumis aux rejets gazeux est défini comme un groupe habitant dans un rayon de 2 à 3 km autour de l'établissement et plus particulièrement soumis à l'influence des vents dominants.

La commune de Digulleville, à environ 2,6 km au nord-est du site et placée le plus fréquemment sous le panache des cheminées compte tenu de la direction et de la fréquence des vents dominants, répond à cette définition. En effet, l'analyse statistique des conditions météorologiques sur la période 1992-1997 a montré que Digulleville dans l'axe des vents dominants (particulièrement en condition de pluie) était la commune la plus souvent sous le panache des rejets gazeux. Les régimes alimentaires du groupe de référence sont présentés dans le tableau suivant. Les valeurs indiquées sont relatives aux populations du Nord-Ouest Cotentin.

La ration alimentaire de ce groupe de référence prend en compte des produits de la pêche et des aliments d'origine terrestre. Les quantités annuelles consommées par catégorie d'individus sont issues de l'enquête réalisée par le CRÉDOC, sur les modes alimentaires dans le Nord-Cotentin. Cette enquête permet également de connaître la part locale de l'alimentation.

Caractéristiques des consommations retenues pour les différentes catégories du groupe de référence de Digulleville

Aliments	HABITANTS DE DIGULLEVILLE Consommation en kg/an Adultes	Part locale de la consommation (%)	Durées de consommation de produits frais (mois)	Durées de stockage des produits conservés (mois)
Lait	150	14,8	12	0,1
Produits laitiers	142	20,6	12	0,1
Viande de bœuf	28,8	35,7	12	0,5
Viande de mouton	2,1	35,7	12	0,5
Viande de porc	41,1	35,7	12	0,5
Viande de volaille	30,8	36,5	12	0,5
Légumes feuilles	23,2	57,4	6 (1)	6
Légumes racines	62,6	54	6 (1)	6
Fruits	142	11,2	6 (1)	3
Crustacés	8,2	53,6	12	0
Mollusques	4,7	75,3	12	0
Poissons	13,8	35,5	12	0

⁽¹⁾ 6 mois de consommation de produits frais

6 mois de consommation de produits conservés

Remarque : Le temps de stockage des produits conservés n'a une influence sur l'impact que dans le cas de radioéléments à vie courte (période inférieure ou égale à une année).

Pour les aliments d'origine terrestre, sont retenues les quantités correspondant au 95 percentile de la consommation des ménages de non-pêcheurs de la zone Nord-Côte Ouest, soit celle des 5 % plus gros consommateurs. La consommation considérée correspond à la consommation réelle d'un aliment par un individu, et non pas à une moyenne de consommation sur l'ensemble de la zone qui inclurait les non-consommateurs.

Les valeurs considérées sont celles corrigées par des facteurs dits « de saisonnalité » pour chaque aliment, qui pondèrent les valeurs obtenues lors de l'enquête afin de s'affranchir de la période de l'année à laquelle celle-ci s'est déroulée.

- Seuls les aliments d'origine locale contribueront à l'impact sur le groupe de référence. L'enquête permet de connaître cette part locale de l'alimentation pour l'ensemble du Nord-Cotentin et on peut vérifier que l'auto-consommation de la population moyenne du Nord-Cotentin n'est pas supérieure à cette part locale.
- L'activité des aliments terrestres locaux est déterminée en supposant qu'ils sont originaires du village de Digulleville (cultures locales des fruits et légumes ; élevages locaux pour le lait et la viande).

L'activité des aliments marins locaux est déterminée en supposant qu'ils sont pêchés à Goury.

Pour les aliments, il est tenu compte d'une consommation de produits frais et d'une consommation de produits conservés. Le temps d'exposition externe du groupe de référence au panache atmosphérique et aux dépôts sur le sol et la végétation dépend également de son mode de vie. On suppose ici de façon majorante, que les personnes résident en permanence à Digulleville. On en déduit qu'elles sont exposées en permanence au panache atmosphérique. En revanche, elles ne sont exposées que le tiers du temps aux dépôts sur le sol et sur la végétation.

Méthode de calcul des impacts des rejets liquides et gazeux

Les groupes de référence considérés incluent dans leur ration alimentaire, à la fois des aliments d'origine marine et des aliments d'origine terrestre. Dans le cas du calcul des doses dues à l'ingestion pour les groupes de référence, il est nécessaire de combiner le modèle de dispersion et de transfert des effluents liquides avec celui des effluents gazeux.

7.4.1. MÉTHODE DE CALCUL POUR LES REJETS LIQUIDES

L'exposition due aux rejets liquides provient de l'ingestion de produits de la pêche. Pour les pêcheurs adultes, il faut ajouter l'exposition externe aux sédiments sur les engins de pêche.

7.4.1.1 Calcul de l'activité de l'eau de mer à Goury

Les effluents radioactifs liquides sont rejetés en mer, dans le Raz Blanchard, par un émissaire qui les conduit à un point situé à 1 700 mètres du rivage au large du Nez de Jobourg.

L'évolution de la concentration dans les eaux réceptrices résulte de trois processus :

- la dilution liée au brassage et au mélange des masses d'eau,
- l'adsorption des radioéléments sur les matières en suspension qui sédimentent,
- la décroissance radioactive.

L'hypothèse retenue est basée sur les conclusions du rapport d'étape du groupe Radioécologie Nord-Cotentin, animé par l'I.R.S.N. Sur la base d'un grand nombre de mesures significatives depuis la création du site de La Hague et de leur homogénéité dans le temps, le

groupe de travail a défini des facteurs de dilution des rejets de l'établissement pour l'eau de mer à la côte le long du littoral du Nord-Cotentin.

La valeur de l'activité de l'eau de mer à la côte est maximale à Goury et le coefficient de dilution moyen résultant des mesures est de 0,76 Bq/m³ pour 1 TBq rejeté par an. Ce résultat, établi en grande partie grâce aux mesures d'antimoine 125, radioélément conservatif au sein de la masse d'eau est applicable directement pour des éléments ayant les mêmes propriétés. Pour les radioéléments qui sédimentent, l'application de ce coefficient de dilution est majorante pour l'activité de l'eau.

Pour le plutonium et les autres émetteurs alpha, on fait l'hypothèse majorante de les considérer simultanément intégralement en suspension et totalement sédimentés. Cette approche prudente amène, fictivement, à supposer un terme source double pour ces radioéléments. Les émetteurs bêta gamma restent majoritairement en suspension dans la colonne d'eau et on leur affecte un coefficient de sédimentation nul. Les résultats du modèle hydrodynamique de la Manche utilisé par le L. R. C. (I.R.S.N.) pour les différents points considérés et les résultats des campagnes de mesures plus ponctuelles sont en bon accord avec les résultats de mesures retenus.

7.4.1.2 Calcul de l'activité des animaux marins

L'activité massique des animaux marins en zone proche est calculée en multipliant l'activité de l'eau de mer à Goury (en Bq/litre) par un facteur de concentration correspondant à l'intégration des radioéléments dans les parties consommées des organismes marins (en litre/kg) et par des facteurs correctifs permettant de prendre en compte les caractéristiques des différents radionucléides.

Ce facteur de concentration représente une situation d'équilibre entre le processus de fixation et celui d'élimination par l'animal marin (radioactivité constante au sein de l'organisme).

Les valeurs des facteurs varient en

fonction de l'espèce et du radioélément. Pour une espèce donnée, il se produit également des variations saisonnières.

Dans le cas du Nord-Cotentin, les travaux du L.R.C. depuis de nombreuses années ont permis d'obtenir une base de données locales très riche, de laquelle des facteurs de concentration locaux plus pertinents peuvent être déduits. L'étude utilise référentiellement ces dernières valeurs, validées par le Groupe

7.4.1.3 Calcul de l'activité ingérée

Radioécologie Nord-Cotentin.

L'activité ingérée annuellement par une personne correspond à l'activité des aliments d'origine marine qu'elle consomme au cours de cette période. Les quantités ingérées dépendent du régime alimentaire propre à la catégorie du groupe de référence. Il faut considérer à la fois les aliments d'origine marine et les aliments d'origine terrestre. Il s'agit, dans les deux cas, de considérer uniquement la part locale des régimes alimentaires.

Pour chaque aliment consommé et chaque radioélément, on multiplie la quantité ingérée (kg/an) par l'activité massique de l'aliment calculée précédemment (Bq/kg). Pour chaque radioélément, on effectue ensuite la somme des activités ingérées sur l'ensemble des aliments du régime.

7.4.1.4 Calcul de la dose par exposition interne

L'exposition interne d'une personne par ingestion d'un radioélément est calculée en multipliant l'activité ingérée de ce radioélément par le coefficient de dose correspondant. Pour chaque radioélément, il existe un coefficient de dose pour le corps entier appelé dose efficace engagée. La somme des expositions internes pour chaque radioélément représente la dose totale par ingestion.

7.4.1.5 Calcul de l'exposition aux engins de pêche et aux sédiments de plage

L'exposition aux engins de pêche est calculée pour les adultes pêcheurs. Les engins de pêche (casiers, lignes, ancres ...) sont supposés séjourner dans les fonds marins locaux et se couvrir d'une fine pellicule de sédiments. Le pêcheur est exposé lorsqu'il remonte les engins à bord (manutention) ou travaille à leur proximité. C'est pourquoi, on calcule d'abord le débit de dose d'une couche de sédiments supposée recouvrir les engins de pêche, cette couche étant supposée infinie. Pour chaque radioélément, l'activité massique des sédiments en zone proche est obtenue en multipliant l'activité volumique de l'eau de mer à Goury (Bg/litre) par le facteur de concentration caractéristique des sédiments (litre/kg). Ce facteur de sédimentation traduit l'équilibre qui existe entre l'adsorption et la désorption des radioéléments sur les sédiments (Voir tableau en annexe).

Il est nécessaire de considérer également une durée d'exposition : elle est de 2 400 heures par an pour les pêcheurs, durée de leur activité professionnelle annuelle.

Pour le facteur de dose concernant l'exposition externe aux dépôts sédimentaires, on utilise les valeurs du Federal Guidance N°12 de l'US-EPA, données dans une publication référencée.

La somme des expositions externes aux fonds marins pour chaque

radioélément représente la dose totale externe de l'exposition aux engins de pêche. Un calcul similaire est effectué pour l'exposition aux sédiments de plage à hauteur d'une exposition de 100 heures par an.

7.4.1.6 Calcul de la dose pour l'ensemble des voies d'atteinte

Pour chaque radioélément et chaque catégorie du groupe de référence soumis préférentiellement aux rejets liquides, la dose totale prend en compte toutes les voies d'atteinte qui doivent être considérées (ingestion et exposition externe) ainsi que les deux origines, terrestre et marine, des aliments pour l'ingestion. L'ingestion constitue la voie d'impact prépondérante.

7.4.1.7 Origines des paramètres retenus

Paramètres	Références	
Facteur de dilution	Mesures dans l'environnement et modèle Manche/Mer du Nord (Rapport du GT Radioécologie Nord-Cotentin)	
Facteurs de concentration (faune- sédiments)	Valeurs locales du Nord-Cotentin établies par le LRC (IRSN), complétées par la publication CEE de 1979 ou par le TRS n°247 de l'AIEA en l'absence d'autres données	
Facteurs d'exposition externe	Valeurs publiées par Federal Guidance N°12 de l'US-EPA (consultable sur la base ECRIN de l'IRSN)	
Coefficients de doses efficaces engagées pour l'ingestion	Coefficients de l'arrêté du 01/09/2003 définissant les modalités de calcul des doses efficaces et des doses équivalentes résultant de l'exposition de personnes aux rayonnements ionisants.	
Les paramètres de la méthode sont issus des références suivantes :		

7.4.2. MÉTHODE DE CALCUL POUR LES REJETS GAZEUX

L'exposition due aux rejets gazeux provient d'une exposition externe et d'une exposition interne.

L'exposition externe est due au panache et au dépôt sur le sol. L'exposition interne provient de l'inhalation, et de l'ingestion de produits d'origine terrestre. Pour les régimes alimentaires, il est tenu compte, en plus des produits de l'agriculture locale, des produits de la pêche locale dont les activités sont calculées selon la méthode présentée précédemment. L'impact total pour l'ensemble des radioéléments peut ensuite être évalué pour le groupe de référence des rejets gazeux (population de Digulleville).

Les paragraphes suivants expliquent l'enchaînement des principaux calculs. Deux cas particuliers sont à considérer :

- la méthode de calcul utilise, pour le carbone 14 et le tritium, le modèle d'activité spécifique basé sur une composition isotopique dans les aliments identique à celle de l'air. Ces deux éléments ne forment pas d'aérosols permanents. Ils se trouvent sous forme de composés gazeux ou très volatils directement assimilés par les végétaux,
- le krypton 85 est un gaz rare qui ne forme pas d'aérosols ; il reste à l'état gazeux et n'intervient que par exposition externe due au panache.

7.4.2.1 Calcul de l'activité volumique de l'air pour le groupe de référence

Le point commun aux voies d'exposition à considérer est le calcul de l'activité volumique de l'air au lieu de vie du groupe de référence.

Cette activité volumique est calculée à l'aide du coefficient de transfert atmosphérique (CTA) qui lui-même prend en compte des paramètres tels que :

- hauteur de rejet,
- vitesse du vent,
- pluviométrie,
- type de diffusion.

Paramètres de dispersion et de dépôt pour Digulleville

Hauteur de rejet	100 m
CTA gaz	9,12.10 ⁻⁸ s.m ⁻³
CTA aérosols	9,12.10 ⁻⁸ s.m ⁻³
Débit de dépôt sec	4,56.10 ⁻¹⁰ Bq.m ⁻² .s ⁻¹
Débit de dépôt humide	2,08.10 ⁻⁹ Bq.m ⁻² .s ⁻¹
Débit de dépôt total	2,53.10 ⁻⁹ Bq.m ⁻² .s ⁻¹

On constate que, pour la période 1992-2013, il y a trois communes pour lesquelles l'impact est maximal: Omonville-la-Petite, Éculleville et Digulleville, avec de faibles écarts. En fonction des années, lorsque le vent dominant du Sud-Ouest dévie de sa direction moyenne, ce sont alors les villages d'Omonville-la-Petite et d'Omonville-la-Rogue qui peuvent être les plus exposés. Si l'on considère les données météorologiques sur une plus longue période, on constate que le secteur de Digulleville est le plus fréquemment soumis au balayage des vents dominants. C'est le village de Digulleville qui est considéré comme représentatif du groupe de référence. L'étude se base sur les valeurs des coefficients de transfert atmosphérique obtenues en ce lieu.

7.4.2.2 L'activité volumique de l'air pour le groupe de référence

L'activité volumique moyenne de l'air (Bq/m³) est obtenue en multipliant le débit moyen l'activité rejeté par le coefficient de transfert atmosphérique pondéré du lieu considéré.

7.4.2.3 Calcul de l'activité inhalée

L'activité inhalée (Bq/an) se calcule par radioélément, pour chaque catégorie du groupe de référence, en multipliant l'activité volumique moyenne de l'air (Bq/m³) par le débit respiratoire annuel (m³/an). Les valeurs des débits respiratoires à utiliser pour les catégories du groupe de référence sont indiquées dans la C.I.P.R. 66. Pour les adultes ce débit est de 8 400 m³/an.

7;4.2.4 Calcul de la dose par exposition interne (inhalation)

L'exposition interne d'une personne par inhalation d'un radioélément est calculée en multipliant l'activité inhalée de ce radioélément par le coefficient de dose correspondant. Pour chaque radioélément, il existe un coefficient de dose pour le corps entier appelé dose efficace engagée. La somme des expositions internes par inhalation pour chaque radioélément représente la dose totale par inhalation.

7.4.2.5 Calcul de la dose par exposition externe (panache)

Les radioéléments présents dans le panache agissent directement sur les individus par exposition externe. Pour chaque radioélément, la dose par exposition externe est obtenue en multipliant l'activité volumique de l'air par un facteur de dose spécifique, en mSv/an par Bq/m³. Pour le facteur de dose concernant l'exposition au panache, on utilise les valeurs du Fédéral Guidance N°12 et la valeur indiquée dans l'arrêté du 01/09/2003 pour le Krypton 85 (2,2.10⁻¹¹ Sv.jour¹/Bq par m³).

7.4.2.6 Calcul de l'activité du dépôt au sol

Les radioéléments du panache susceptibles de former des aérosols alpha et bêta-gamma se déposent sur le sol et sur la végétation pouvant ainsi entraîner un transfert vers l'homme via la chaîne alimentaire. L'évaluation du dépôt total à la surface du sol pour un radioélément prend en compte une situation d'équilibre entre : d'une part, des apports pendant un certain nombre d'années de fonctionnement des installations ;

ces apports se caractérisent par des débits de dépôt par temps sec et par temps humide (en Bq/m².s) et une durée de dépôt, fixée à 60 ans pour prendre en compte les activités passées et futures du site, d'autre part, des phénomènes de décroissance : outre la période de décroissance radioactive de l'élément, le calcul du dépôt sur le sol prend en compte la décroissance par migration de l'élément dans le sol. L'ensemble de ces périodes dépend du radioélément considéré. Le débit de dépôt par temps sec ou par temps humide est le produit de trois termes:

la probabilité de temps sec ou de temps de pluie,

l'activité de l'air correspondante (temps sec ou temps de pluie), la vitesse de dépôt par temps sec ou par temps de pluie.

Par temps sec, la vitesse apparente

de dépôt est prise égale à 0,005 m/s pour tous les radioéléments. Par temps de pluie (1 mm/h en moyenne), la vitesse équivalente de dépôt ou facteur global de dépôt par temps de pluie, varie avec la distance. Les valeurs sont déduites du taux de lavage de 0,0001 par seconde, pour une pluie de 1 mm/h selon la méthode décrite dans le « Modèle I.P.S.N. pour le calcul simplifié de la dispersion atmosphérique des rejets accidentels » J. LE GRAND, D. MANESSE - Rapport du C.E.A. R-5170 (1982). La vitesse globale équivalente de dépôt par temps de pluie est prise égale à 0,1 m/s.

7.4.2.7 Calcul de la dose par exposition externe (dépôt au sol)

La dose par exposition externe due au dépôt au sol est calculée pour chaque radioélément en multipliant l'activité du dépôt au sol par le facteur de dose concernant le dépôt au sol.

On utilise pour le facteur de dose, les valeurs du Federal Guidance N°12.

7.4.2.8 Calcul de l'activité du dépôt sur la végétation

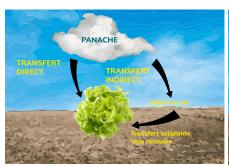
La végétation retient seulement une fraction du dépôt qui tombe sur sa

surface. La rétention du dépôt par temps humide est plus faible que la rétention du dépôt par temps sec. Le dépôt d'un radioélément sur la végétation est le résultat d'une situation d'équilibre entre :

- d'une part, les apports des radioéléments par temps sec et par temps humide, pondérés par les coefficients de rétention correspondants,
- d'autre part, les pertes par décroissance radioactive et élimination biologique et mécanique.

Les apports en radioélément se caractérisent par des débits de dépôts par temps sec et par temps humide, déjà présentés dans le calcul du dépôt sur le sol et exprimés en Bq/m².s, ainsi que par la durée de dépôt.

Dans le cas le plus général, on considère le dépôt sur les parties récoltables (temps de dépôt = temps de croissance de la partie récoltable) et le dépôt qui peut atteindre la partie récoltable par translocation, c'est-à-dire le déplacement de l'activité déposée sur le végétal entier vers la partie consommable (temps de dépôt = temps de croissance du végétal entier).


7.4.2.9 Calcul de l'activité massique des végétaux

Le transfert de l'activité des rejets gazeux vers les végétaux s'effectue : par assimilation du dépôt de radioéléments sur les végétaux et transfert vers les parties récoltables (transfert direct par voie foliaire), par transfert des radioéléments du sol vers les parties récoltables des végétaux, (transfert indirect par voie racinaire).

Le calcul de l'activité des végétaux nécessite la connaissance de l'activité du dépôt sur le sol et du dépôt sur la végétation. En termes de transfert de la radioactivité vers les parties récoltables, on distingue trois

- l'herbe et les légumes feuilles (salades ...),
- les légumes racines (carottes ...),
- les fruits.

catégories de végétaux :

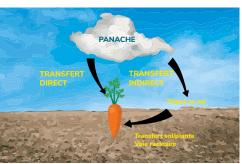
Transfert vers l'herbe et les légumes feuilles

Pour chaque catégorie, l'activité totale du végétal est constituée d'un transfert direct par le dépôt sur la végétation (voie foliaire) et d'un transfert indirect du dépôt au sol vers le végétal (voie racinaire). Les activités massiques sont calculées en Bq par kilogramme de matière fraîche.

Herbes et légumes feuilles :

Le transfert direct est proportionnel au dépôt sur la végétation pendant le temps de croissance du végétal entier. Il est également proportionnel au rapport de la surface consommable par rapport à la surface de la culture (1 dans ce cas) et inversement proportionnel au rendement de la culture (en kg frais/ m²).

Le transfert indirect est le produit de 2 termes :


- le dépôt sur le sol en Bg/m² et.
- le facteur de transfert sol/ plante soit pour l'herbe, soit pour les légumes feuilles, qui dépend du radioélément.

Légumes racines :

Le transfert direct pour les légumes racines se fait exclusivement par translocation du dépôt sur la partie aérienne vers la racine comestible. Ce transfert est proportionnel au dépôt sur la végétation pendant le temps de croissance du végétal entier et au facteur de translocation de ce dépôt. Il est également proportionnel au rapport de la surface consommable par rapport à la surface de la culture (1 dans ce cas) et inversement proportionnel au rendement de la culture (en kg frais/ m²).

Le transfert indirect est le produit de 2 termes :

- le dépôt sur le sol en Bq/m² et,
- le facteur de transfert sol/ plante pour les légumes racines qui dépend du radioélément.

Transfert vers les légumes racines

Fruits:

Pour l'activité des fruits, le transfert direct est la somme de deux modes de transfert qui agissent simultanément ; l'apport direct sur le fruit qui est analogue au transfert direct pour l'herbe et les légumes feuilles ; et l'apport direct par translocation du dépôt sur l'arbre vers le fruit qui s'apparente au transfert direct pour les légumes racines.

Les deux apports sont proportionnels à un dépôt sur la végétation. Pour l'apport direct sur le fruit, analogue à celui de l'herbe, il faut considérer comme temps de dépôt, le temps de croissance du fruit (partie comestible). Pour l'apport par translocation du dépôt sur l'arbre, il faut considérer comme temps de dépôt, le temps de croissance du végétal entier. Chaque apport est inversement proportionnel au rendement de la culture (en ka frais/m²). Dans chaque cas, il faut considérer les rapports de la surface consommable à la surface totale du végétal concernée par le mode de transfert. Le transfert indirect est le produit de 2 termes : le dépôt sur le sol en Bq/m², le facteur de transfert sol/plante spécifique des fruits qui dépend du radioélément.

7.4.2.10 Calcul des activités massiques du lait et de la viande

Les animaux consommant l'herbe et autres aliments intègrent de l'activité et peuvent la transmettre au lait et à la viande de consommation courante.

Les animaux pris en compte pour l'étude sont la vache laitière, le mouton, le porc, la volaille, qui sont représentatifs du cheptel de la zone proche de l'établissement. Les régimes alimentaires de ces animaux sont détaillés dans les rapports du GRNC.

On considère que la seule voie d'atteinte au lait et à la viande est l'ingestion par les animaux. En effet, les apports d'activité aux animaux provenant de l'inhalation et d'ingestion d'eau de pluie très faiblement active sont négligeables. L'activité de la viande (Bg/kg) est donc proportionnelle à la quantité d'aliment ingérée par jour par l'animal, à l'activité de cet aliment consommé et à un coefficient qui estime l'activité massique de la viande pour une quantité ingérée par jour unitaire. Ce coefficient est appelé facteur de transfert à la viande et s'exprime en Bq/kg de viande pour 1 Bg ingéré par jour. Sa valeur dépend du radioélément concerné. Comme on dispose de valeurs d'activités des aliments, il est possible de calculer les activités massiques de la viande. L'activité massique du lait (Bq/L) suit la même loi que celle de la viande ; on utilise un coefficient de transfert au lait qui s'exprime en Bq/L pour 1 Bq ingéré par jour, dont la valeur dépend du radioélément. Comme dans le cas de la viande, il est possible de calculer les activités massiques par transfert direct et par transfert indirect. L'activité totale du lait pour un radioélément est alors la somme des deux activités obtenues pour chaque type de transfert.

7.4.2.11 Calcul de l'activité ingérée

Les quantités ingérées dépendent du régime propre à la catégorie du groupe de référence. Il faut considérer à la fois les aliments d'origine terrestre et ceux d'origine marine dont les activités sont déterminées selon la méthode décrite précédemment. Il s'agit dans les deux cas de considérer uniquement la part locale de la ration alimentaire. Pour les produits de l'agriculture locale, on tient compte d'une durée de conservation avant consommation variable en fonction de la nature de l'aliment. Pour chaque aliment d'origine terrestre consommé et chaque radioélément, on multiplie la quantité ingérée (kg/an) par l'activité massique de l'aliment calculée précédemment (Bq/kg) et par un

facteur de décroissance qui tient compte de la répartition de l'alimentation en produits frais et en produits conservés ainsi que des durées de conservation. Le lait est supposé être conservé

Le lait est supposé être conservé systématiquement trois jours avant consommation et la viande 15 jours. Pour les végétaux, la consommation est de 6 mois de produits frais et de 6 mois de produits conservés (durée de conservation de 6 mois). Pour les fruits la consommation est de 6 mois et la durée de conservation de 3 mois.

Les facteurs de décroissance par catégorie d'aliment ont des valeurs très voisines de 1 pour l'ensemble des radioéléments à l'exception du ruthénium 106 qui a une période radioactive courte (1,02 an). C'est pour les légumes et les fruits que la diminution d'activité ingérée est la plus significative mais elle reste cependant assez faible (10 à 15 %). La conservation des aliments influe donc finalement peu sur les activités ingérées.

Pour chaque radioélément, on effectue ensuite la somme des activités ingérées sur l'ensemble des aliments du régime.

7.4.2.12 Calcul de la dose par exposition interne (ingestion)

L'exposition interne d'une personne par ingestion d'un radioélément est calculée en multipliant l'activité ingérée de ce radioélément par le coefficient de dose correspondant. Pour chaque radioélément, il existe un coefficient de dose pour le corps entier appelé dose efficace engagée. La somme des expositions internes pour chaque radioélément représente la dose totale par ingestion.

Les coefficients de dose sont établis et validés par différentes organisations internationales : Commission des Communautés Européennes (C.C.E.), Commission Internationale de Protection Radiologique (C.I.P.R.) ainsi que l'Agence Internationale pour l'Énergie Atomique (A.I.E.A.). L'étude utilise, comme base d'estimation de la dose efficace, la Directive Européenne 96/29 EURATOM qui indique la

dépendance des coefficients avec l'âge des populations.

7.4.2.13 Calcul de la dose pour l'ensemble des voies d'atteinte

Pour chaque radioélément et chaque catégorie du groupe de référence soumis préférentiellement aux rejets gazeux, la dose totale prend en compte toutes les voies d'atteinte qui doivent être considérées (ingestion, inhalation, exposition externe au panache et au dépôt au sol) ainsi que les deux origines, terrestre et marine, des aliments pour l'ingestion. L'ingestion constitue une voie d'impact importante.

7.4.2.14 Origines des paramètres utilisés

Les paramètres de la méthode sont issus des références suivantes :

Paramètres	Références
Débits respiratoires des catégories du groupe de référence	Valeurs de la C.I.P.R. 66
Conditions et paramètres de diffusion	Données du site et résultats du GT Radioécologie Nord-Cotentin
Caractéristiques du transfert aux végétaux	Références internationales
Caractéristiques du transfert aux animaux	Références internationales
Facteurs d'exposition externe	Federal Guidance N°12 et arrêté du 01/09/2003
Coefficients de doses efficaces engagées pour l'inhalation et pour l'ingestion	Coefficients de l'arrêté du 01/09/2003 définissant les modalités de calcul des doses efficaces et des doses équivalentes résultant de

résultant de

l'exposition de

personnes aux

rayonnements

ionisants.

Application de la méthode aux rejets de l'établissement

7.5.1. COMPOSITION DES REJETS LIQUIDES ET GAZEUX

La liste la plus exhaustive de radioéléments à considérer est constituée par l'ensemble des radioéléments contenus dans les combustibles irradiés. Le Groupe Radioécologie Nord-Cotentin a établi une liste importante de radioéléments qui seraient potentiellement rejetés en mer, compte tenu de leur présence dans le combustible.

7.5.1.1 Radioéléments à considérer pour les rejets liquides

Les radioéléments se décomposent en deux groupes en fonction des quantités rejetées : ceux dont la quantité rejetée est significative quel que soit leur impact et ceux dont la quantité rejetée est très faible. Dans le premier groupe, il est nécessaire, compte tenu des quantités mises en jeu d'effectuer un calcul d'impact pour chaque radioélément. Il s'agit :

- du tritium dégagé lors du cisaillage des combustibles et se retrouvant majoritairement dans les effluents liquides,
- du carbone 14 et de l'iode 129, également dégagés lors des opérations de cisaillage des combustibles. L'air de balayage est lavé dans une colonne comportant de la soude qui piège plus de 96 % de l'iode et une partie du carbone, entraînant ces éléments dans les effluents liquides,
- des produits de fission majeurs, émetteurs bêta: césium, strontium 90 (et son descendant l'yttrium 90), ruthénium 106 (et son descendant le rhodium 106), cobalt 60, antimoine 125 et technétium 99.
- des émetteurs alpha: plutonium et actinides mineurs (américium et curium). Aux isotopes du plutonium émetteurs alpha est associé l'isotope Pu 241 émetteur bêta-gamma.

En revanche, dans le deuxième groupe, la plupart des radioéléments considérés sont à l'état de traces dans le combustible et leur impact est extrêmement faible. L'impact de ces radioéléments représente moins de 2 % de la dose totale due aux rejets autorisés, pour les adultes du groupe de population le plus exposé. Les méthodes de calcul précédemment décrites permettent de déterminer l'impact à Goury pour des rejets unitaires de 1 TBq par an pour chacun des radioéléments considérés.

7.5.1.2 Radioéléments à considérer pour les rejets gazeux

Les radioéléments se décomposent en deux groupes en fonction des quantités rejetées : ceux dont la quantité rejetée est significative quel que soit leur impact et ceux dont la quantité rejetée est très faible.

Dans le premier groupe, il est nécessaire, compte tenu des quantités mises en jeu d'effectuer un calcul d'impact pour chaque radioélément. Il s'agit :

- du tritium,
- de l'iode 129,
- du krypton 85 et du carbone 14,
- des aérosols alpha assimilés à du plutonium et des aérosols bêta assimilés à du ruthénium-rhodium 106 et du césium 137.

Les méthodes de calcul précédemment décrites permettent de déterminer l'impact à Digulleville pour des rejets gazeux unitaires de 1 TBq par an pour chacun des radioéléments considérés.

Impact des rejets liquides et gazeux

L'impact des rejets aux groupes de référence (adultes) des agriculteurs de Digulleville, Herqueville et pêcheurs de Goury.

2023	mSv/an	mSv/an	mSv/an
2023	Digulleville	Herqueville	Goury
	0,0091	0,0045	0,0046

Annexes pour l'évaluation de l'impact des rejets

Coefficients de dose engagée pour le corps entier – ingestion (Directive Européenne 96/29 EURATOM et repris par l'arrêté du 01/09/2003)

Radioéléments	Adultes (Sv/Bq)
C14	5,80E-10
I129	1,10E-07
Н3	1,80E-11
Ru106 (Rh106)	7,00E-09
Sb125	1,10E-09
Sr89	2,60E-09
Sr90 (Y90)	2,80E-08
Cs134	1,90E-08
Cs137 (Ba137m)	1,30E-08
Co58	7,40E-10
Co60	3,40E-09
Tc99	6,40E-10
Pu241	4,80E-09
Pu (a)	2,35E-07
Pu238	2,30E-07
Pu239 + Pu240	2,50E-07
Am241	2,00E-07
Cm244	1,20E-07

Facteur de concentration (1) en milieu marin (LCR)

(1) Ces valeurs ont été validées par le groupe de travail Radioécologie Nord-Cotentin.

Italique = Commission Européenne (1979)

Coefficients de dose engagée pour le corps entier – inhalation (Directive Européenne 96/29 EURATOM)

Radioéléments (Sv/Bq)	Clairance pulmonaire **	Adultes
Н3	M (eau tritiée)	6E-12
I129	F	3,60E-08
Kr85	Aucun	
C14	CO ₂ gaz (M)	6,2E-12
Pu238	F	4,6E-5
Pu239	F	5E-5
Pu240	F	5E-5
Pu242	F	4,8E-5
Rh106	M	1,4E-8
Cs137	M	2,3E-9
Pu241	F	9E-7

F = rapide ; M = moyenne

Paramètres de transfert dans les milieu marin et terrestre

Radioélément	Crustacé IRSN LRC 98 (l/kg)	Mollusque	Poisson	Sédiment
C14	5,0E+03	5,0E+03	5,0E+03	2,0E+03
I129	1,0E+02	1,0E+02	1,5E+01	5,0E+02
Н3	1,0E+00	1,0E+00	1,0E+00	1,0E+00
Ru106 (Rh106)	3,0E+02	6,0E+02	2,0E+00	5,0E+03
Sb125	1,0E+01	2,0E+01	2,0E+01	4,0E+02
Sr89	5,0E+00	1,0E+01	5,0E+00	3,0E+01
Sr90 (Y90)	5,0E+00	1,0E+01	5,0E+00	3,0E+01
Cs134	1,0E+02	5,0E+01	4,0E+02	1,0E+03
Cs137 (Ba137m)	1,0E+02	5,0E+01	4,0E+02	1,0E+03
Co58	5,0E+03	2,0E+03	2,0E+02	4,0E+04
Co60	5,0E+03	2,0E+03	2,0E+02	4,0E+04
Tc99	1,3E+03	4,0E+02	8,0E+01	1,0E+02
Pu241	5,0E+02	3,0E+03	1,0E+02	1,0E+05
Pu (alpha)	5,0E+02	3,0E+03	1,0E+02	1,0E+05
Pu238	5,0E+02	3,0E+03	1,0E+02	1,0E+05
Pu239 + Pu240	5,0E+02	3,0E+03	1,0E+02	1,0E+05
Am241	1,0E+03	1,0E+03	1,0E+02	3,0E+04
Cm244	1,0E+03	1,0E+03	1,0E+02	2,0E+06

Caractéristiques des transferts aux végétaux

<u> </u>				
Transfert ou végétaux	Herbe	Légumes Feuilles	Légumes Racines	Fruits
Vitesse de dépôt pour tous radioéléments (m/s) * par temps sec * par temps de pluie	0,005 0,1	0,005 0,1	0,005 0,1	0,005 0,1
Temps de croissance du végétal entier (jours)	60	30	90	90
Temps de croissance de la partie récoltable (jours)	60	30	60	60
Rendement des cultures (kg frais/m²)	1,5	1,5	3	2
Rapport de la surface consommable à la surface totale du végétal (s.d.)	1	1	1	0,1

s. d. : sans dimension

CONDITIONS DE DIFFUSION	ZONE PROCHE	i .	
Hauteur d'émission	100 mètres	100 mètres	100 mètres
Localisation	Digulleville	Herqueville	Goury
Angle / Nord	30 degrés	180 degrés	310 degrés
Distance	2,6 kilomètres	1,1 kilomètres	6,5 kilomètres
Coefficient de transfert atmos	phérique pondé	ré en (Bq/m³) p	ar (Bq/s)

CTA 9,12.10⁻⁸ 4,31.10⁻⁸ 1,53.10⁻⁸

Rapport annuel de surveillance de l'environnement du site Orano la Hague

Dans le cadre de la surveillance réglementaire et systématique de l'environnement de l'établissement de la Hague, le Laboratoire Environnement a pour mission essentielle la recherche et le dosage des radionucléides dans le milieu naturel. Constitué d'une équipe d'une dizaine d'analystes, dont un ingénieur, ce laboratoire dispose de nombreux équipements de mesure pour caractériser les radionucléides contenus dans un échantillon.

Les techniques utilisées sont variées : spectrométrie d'émission de flamme comptages alpha & bêta, chromatographie liquide, spectrométrie alpha, X et gamma, analyse par scintillation liquide.

Le laboratoire contrôle environ 19 000 échantillons par an et effectue environ 50 000 analyses, sous le contrôle de l'Autorité de sûreté nucléaire (ASN).

Les compétences techniques du laboratoire s'articulent autour de l'analyse physico-chimique d'éléments présents à l'état de traces (tritium, carbone 14, iode 129, strontium 90 ...) et autour d'analyses physiques effectuées par comptage et spectrométrie sur des échantillons de l'environnement (eau, lait, légumes, poissons, mollusques, crustacés, algues ...).

Le laboratoire participe à l'élaboration des normes AFNOR et accueille des stagiaires issus de formation diverses universitaires, (BTS, IUT, élèves ingénieurs ...)

19 000 échantillons prélevés,

50 000 analyses par an

Système de management environnemental (SME)

9.1 LA NORME ISO 14 0001

L'ISO 14 001 intitulée « Système de Management Environnemental » est une norme internationale parue en 1996.

Elle définit les dispositions à mettre en œuvre par une entreprise, permettant d'assurer la maîtrise de l'impact sur l'environnement de ses activités et produits. La mise en œuvre de cette norme permet de donner confiance aux parties intéressées (autorités, élus, habitants, associations ...) :

- sur l'engagement à satisfaire sa politique,
- sur la mise en place d'actions préventives plutôt que correctives,
- sur l'engagement à satisfaire ses obligations de conformité règlementaires et autres,
- sur le traitement des risques et opportunités
- sur une démarche d'amélioration continue des impacts environnementaux significatifs.

La certification du Système de Management Environnemental suivant la norme ISO 14001, a été délivrée le 15 mai 2001 l'établissement Orano la Hague et renouvelée tous les 3 ans depuis 2004. L'établissement a été certifié en 2018 selon la norme ISO 14001 version 2015. Cette nouvelle version apporte notamment les principales évolutions suivantes :

- L'importance accrue du management environnemental dans les processus de planification stratégique de l'organisme;
- Le renforcement de l'implication de la direction;
- Un engagement plus ferme en faveur d'initiatives proactives destinées à stimuler la performance environnementale.

9.2 LE SYSTÈME DE MANAGEMENT ENVIRONNEMENTAL

9.2.1. Périmètre

Le système de Management Environnemental est mis en œuvre conformément à la norme ISO 14001. Il s'applique à l'ensemble des activités, maîtrisées par l'établissement Orano la Hague à l'origine d'impacts environnementaux à savoir : le traitement de combustibles et matières nucléaires les activités de valorisation et les activités associées du Site de Orano la Hague. Le périmètre géographique de ces activités est défini par l'ensemble des installations dans les limites de propriété de l'établissement Orano la Hague auxquelles sont associées les 5 stations de mesures villages et les piézomètres gérés par l'établissement.

9.2.2. Notre organisation environnement, des instances décisionnelles : le Comité Environnement et le Comité de Veille Règlementaire

Le comité environnement valide le programme de management environnemental, notamment les objectifs à venir, suit l'avancement des actions et peut définir des axes d'amélioration. Il peut également examiner certains indicateurs environnement.

Une structure opérationnelle

Le secteur Sûreté - Environnement au sein duquel une cellule Environnement est plus particulièrement chargée de faire vivre le système de management environnemental.

Des relais sur le terrain

- des référents ISO 14001 : ils mettent à jour les analyses environnementales de leur thème d'expertise, proposent des actions d'amélioration et donnent leur avis sur les modifications,
- des Chefs de secteurs : Ils sensibilisent le personnel de leur secteur, assurent le suivi des actions du Programme et Management Environnemental
- des Ingénieurs Sûreté /
 Environnement et leur responsable
 d'activité: ils évaluent l'impact
 environnemental des modifications,
 ils réalisent les évaluations de
 conformité des textes réglementaires
 et proposent des solutions en cas de
 non-conformité,
- des auditeurs Environnement: Ils réalisent les audits internes dans le cadre du Système de Management Intégré.

13 thèmes

d'expertise relatifs à l'environnement ont été identifiés :

- Rejets gazeux des installations nucléaires et contrôle de l'air ambiant dans les villages environnants;
- Rejets gazeux des installations non nucléaires;
- Rejets liquides par l'émissaire marin ;
- Rejets liquides en ruisseaux ;
- Ressources et matières premières ;
- Déchets solides nucléaires :
- Déchets conventionnels ;
- Pollution radiologique du sol et sous-sol;
- Réactifs et solutions radioactives ;
- Nuisances et biodiversité :
- Transports de marchandises dangereuses;
- Réactifs et solutions radioactives ;
- Perspective de cycle de vie.

La circulaire du 5 janvier 2009 a défini une nouvelle phase de « l'action nationale de Recherche et de Réduction des Substances Dangereuses dans l'Eau (« RSDE »), concernant les rejets des installations classées pour la protection de l'environnement (ICPE). En 2010 la démarche a été étendue à l'ensemble des INB par l'Autorité de sûreté nucléaire.

Cette action s'inscrit dans la démarche imposée par la directive 2000/60/CE du 23 octobre 2000 dite Directive Cadre sur l'Eau (DCE) visant à renforcer la protection de l'environnement aquatique par des mesures spécifiques conçues pour, d'une part, réduire progressivement les rejets et pertes de substances « prioritaires » dans le milieu aquatique et, d'autre part, les supprimer progressivement. La liste de ces substances (106) figure en annexe de la DCE.

Campagne RSDE dans les effluents « inactifs » (GUW, GR)

L'établissement participe depuis 2010, à la demande de l'ASN, à la démarche RSDE :

En 2011, une campagne de recherche des substances visées par l'annexe de la directive 2000/60/CE du 23 octobre 2000 a été réalisée dans les rejets d'effluents usés domestiques et industriels (GUW) et dans les rejets d'eau à risque (GR).

En 2012, à la suite de cette première campagne, un suivi des substances quantifiées ou détectées a été effectué pendant 5 mois, à raison d'une mesure par mois.

En 2013, l'établissement de la Hague a engagé une prestation auprès d'un organisme spécialisé formalisant ainsi le bilan de ces 2 années de suivi. Au regard des critères de maintien de la surveillance, définis par la circulaire du 5 janvier 2009, le rapport de synthèse conclut à l'abandon de la démarche pour tous les rejets liquides inactifs. Ce rapport réglementaire a été transmis à l'ASN (courrier 2013-30687) le 23/10/2013, afin de valider l'arrêt de la surveillance RSDE.

Campagne RSDE dans les effluents α actifs α (A, V)

Concernant les rejets actifs (effluents laboratoire d'analyse n'est en mesure d'analyser l'ensemble des substances

concernées sur des effluents marqués radiologiquement et de respecter les limites de quantification demandées.

Les recherches menées depuis 2011 par l'établissement ont abouti à retenir le laboratoire AREVA ERLANGEN, qui est en mesure d'analyser 82 paramètres sur les 112 paramètres requis par le programme RSDE.

Une première campagne de mesure a été effectuée en 2014 par le laboratoire AREVA ERLANGEN sur un ensemble de 40 paramètres pour lequel le laboratoire est en mesure de réaliser les analyses avec les méthodes et matériels existants.

Une seconde campagne de mesure a été effectuée en 2015 par ce même laboratoire sur un ensemble de 42 paramètres pour lequel il a été nécessaire de qualifier certaines méthodes d'analyse.

L'établissement Orano la Hague a engagé une prestation auprès d'un organisme spécialisé formalisant le bilan de ces campagnes de mesures. En conclusion, la quasi-totalité des paramètres analysés dans les effluents actifs sont non quantifiés ou déjà suivis dans la cadre de la surveillance réglementaire.

Les seuls paramètres faiblement quantifiés (entre 9 et 30 µg/L) sont les bromo diphényles éthers (BDE) (au nombre de 5) et ne sont pas utilisés comme réactifs ou composant de réactifs de procédé utilisés sur l'établissement Orano la Hague.

Modifications au voisinage du site

Il n'y a pas eu en 2022, de modification au voisinage du site susceptible de modifier les conclusions de l'étude d'impact.

Rapport annuel de surveillance de l'environnement Orano la Hague RÉSULTATS DÉTAILLÉS

Édition 2023

SOMMAIRE

126 Prélèvements d'eau

Rejets radioactifs des installations nucléaires de base

129 Rejets liquides

- Rejets chimiques en mer (p.129)
- Rejets des eaux usées (p.130)
- Rejets des eaux pluviales (p. 134)
- Surveillance physicochimique et biologique de l'environnement
 - L'eau de mer au large
 - L'eau de mer dans l'anse des Moulinets
 - La nappe phréatique résultats des espèces chimiques des eaux souterraines

148 Bibliographie - Études

152 Glossaire

Les résultats détaillés de la surveillance de la radioactivité dans l'environnement terrestre et marin sont consultables sur le site du « Réseau national de mesures de laradioactivité de l'environnement (RNM) »

Prélèvements d'eau

2023 m³/mois	Prélèvements dans le barrage	Prélèvements dans le réseau public
Janvier	40 275	8 205
Février	13 265	4 872
Mars	2 878	4 872
Avril	2 304	4 202
Mai	10 877	3 997
Juin	46 037	3 231
Juillet	45 302	3 511
Août	42 450	4 682
Septembre	28 859	4 543
Octobre	25 548	6 523
Novembre	9 375	5 581
Décembre	39 939	4 570
Total	307 109	57 226

Rejets radioactifs gazeux des installations nucléaires de base

Résultats des mesures sur les prélèvements atmosphériques 2023 - Bilan mensuel établissement

Mois	Activité (Bq)					
	Tritium	Iodes radioactifs	Gaz rares	Carbone 14	Autres émetteurs Bêta Gamma	Émetteurs Alpha
	Limite 1/6 annuelle 2.500E+13	Limite 1/6 annuelle 3.000E+09	Limite 1/6 annuelle 7.833E+16	Limite 1/6 annuelle 4.667E+12	Limite 1/6 annuelle 1.667E+08	Limite 1/6 annuelle 1.667E+06
janvier	6,29E+11	3,14E+08	2,74E+15	1,10E+12	6,73E+06	3,84E+04
février	7,64E+11	2,56E+08	3,00E+15	6,60E+11	6,75E+06	3,58E+04
mars	2,81E+12	3,72E+08	9,30E+15	1,20E+12	7,18E+06	3,71E+04
avril	5,63E+12	4,17E+08	2,40E+16	1,13E+12	7,45E+06	3,43E+04
mai	5,25E+12	4,37E+08	2,61E+16	1,10E+12	7,78E+06	3,90E+04
uin	4,85E+12	4,86E+08	2,10E+16	1,13E+12	6,94E+06	3,55E+04
uillet	4,53E+12	4,99E+08	2,44E+16	1,17E+12	8,41E+06	3,54E+04
août	8,56E+12	6,81E+08	4,53E+16	2,88E+12	9,80E+06	3,52E+04
septembre	5,64E+12	5,25E+08	2,72E+16	1,56E+12	8,74E+06	3,57E+04
octobre	4,87E+12	4,85E+08	2,12E+16	1,22E+12	8,10E+06	3,56E+04
novembre	4,82E+12	5,95E+08	2,28E+16	1,21E+12	1,12E+07	3,17E+04
décembre	5,92E+12	6,22E+08	2,65E+16	1,42E+12	1,09E+07	3,09E+04

Bilan annuel établissement

	Activité (Bq)	Limite	% de la limite
Tritium	5,43E+13	1,50E+14	36,18
Iodes radioactifs	5,69E+09	1,80E+10	31,6
Gaz rares	2,53E+17	4,70E+17	53,93
Carbone 14	1,58E+13	2,80E+13	56,31
Autres émetteurs Bêta Gamma	1,01E+08	1,00E+09	10,06
Émetteurs Alpha	4,25E+05	1,00E+07	4,25

Rejets chimiques en mer

Bilan annuel des espèces chimiques rejetées dans les rejets A, V et GR

Espèces	Flux annuel (kg)	Limite	% de la limite
Nitrates	1,74E+06	2,90E+06	60,13
Ammonium	3,52E+01	3,00E+02	11,72
Potassium	1,66E+03		
Soufre total	6,58E+03	1,60E+04	41,13
Aluminium	1,01E+02	2,60E+02	38,94
Fer	9,38E+01	2,50E+02	37,52
Nickel	3,01E+00	2,50E+01	12,05
Chrome	2,58E+00	1,50E+01	17,19
Baryum	1,68E+01	8,50E+01	19,72
Cobalt	3,88E+00	3,00E+01	12,92
ТВР	8,70E+02	2,50E+03	34,79
Plomb	1,34E+00	1,00E+01	13,41
Hydrazine	8,50E+00	1,00E+01	84,96
Fluorure	2,99E+01	8,00E+01	37,35
Mercure	8,77E-02	3,50E-01	25,05
Zinc	3,11E+01	8,00E+01	38,9
Manganèse	1,85E+01	5,00E+01	36,97
Zirconium	1,70E+00	5,00E+00	33,97
Cadmium	5,98E-01	3,00E+00	19,93
DCO	1,33E+04	6,00E+04	22,18
Nitrite	3,44E+04	7,00E+04	49,16
Phosphore total	2,11E+02	1,20E+03	17,6
Hydrocarbure	1,86E+02		
Antimoine	4,77E-01	1,50E+01	3,18
Argent	4,10E-01	1,00E+01	4,1
Arsenic	1,06E+00	5,00E+00	21,14
Bore	2,01E+01	1,15E+02	17,47
Cérium	2,59E+00	7,69E+02	0,34
Cuivre	1,01E+01	1,50E+01	67,08
Étain	3,70E-01	5,00E+00	7,4
Molybdène	5,53E-01	1,50E+01	3,69
Sélénium	5,58E-01	3,00E+01	1,86
Titane	6,38E-01	1,00E+01	6,38
Uranium	2,80E+01	6,00E+01	46,69
Vanadium	3,67E-01	1,00E+01	3,67

Rejets radioactifs en mer

Bilan des activités totales rejetées en mer en 2023 - Bilan mensuel établissement

	Activités (Bq)	totaloo rojo					ocabilooon		A. day	
Mois	Tritium	Iodes radioactifs	Carbone 14	Strontium 90	Césium 137	Césium 134	Ruthénium 106	Cobalt 60	Autres émetteurs Bêta Gamma	Émetteurs Alpha
janvier	3,75E+14	4,06E+09	2,28E+10	6,45E+09	3,87E+10	1,90E+09	2,32E+11	3,82E+09	2,49E+11	1,08E+09
février	3,65E+13	1,90E+09	2,98E+09	1,76E+09	2,56E+10	1,45E+09	2,47E+09	4,38E+09	4,66E+09	4,28E+08
mars	1,03E+14	3,59E+10	1,73E+11	5,56E+09	9,37E+10	5,25E+09	4,96E+10	4,56E+09	5,99E+10	1,36E+09
avril	7,86E+14	1,21E+11	5,82E+11	1,73E+10	1,57E+11	7,28E+09	2,20E+11	1,96E+10	2,45E+11	2,81E+09
mai	8,08E+14	8,93E+10	4,78E+11	7,85E+09	9,40E+10	1,02E+10	6,76E+10	1,52E+10	7,99E+10	2,99E+09
juin	8,94E+14	1,12E+11	6,52E+11	1,10E+10	2,07E+11	1,30E+10	1,30E+11	1,38E+10	1,49E+11	6,23E+09
juillet	7,76E+14	1,24E+11	7,64E+11	1,03E+10	1,63E+11	9,01E+09	1,08E+11	1,58E+10	1,27E+11	3,80E+09
août	1,47E+15	2,11E+11	1,19E+12	1,19E+10	1,97E+11	1,15E+10	1,30E+11	1,38E+10	1,51E+11	3,20E+09
septembre	1,42E+15	1,58E+11	8,07E+11	8,99E+09	6,12E+10	5,14E+09	8,69E+10	2,17E+10	9,81E+10	2,95E+09
octobre	9,19E+14	9,94E+10	4,76E+11	9,47E+09	6,50E+10	5,07E+09	7,44E+10	1,90E+10	9,08E+10	3,57E+09
novembre	9,12E+14	9,53E+10	5,85E+11	8,54E+09	8,00E+10	7,78E+09	4,49E+10	7,78E+09	5,50E+10	3,52E+09
décembre	1,01E+15	1,29E+11	7,39E+11	1,19E+10	8,90E+10	7,17E+09	6,19E+09	5,65E+09	1,93E+10	2,81E+09

Rejets des eaux usées

3.3.1. MOYENNES MENSUELLES DES CONCENTRATIONS INSTANTANÉES GUW

Valeurs en mg/L

		_,							_			_,	Limite
Paramètres	Janv.	Fév.	Mars	Avril	Mai	Juin	Juil.	Août	Sept.	Oct.	Nov.	Déc.	autorisée
DCO	18,2	29,2	21,0	22,6	21,2	30,7	22,6	18,3	24,0	19,7	14,8	19,3	120 mg/L
MES	17,8	14,1	11,5	19,4	17,0	18,6	23,0	21,6	22,8	16,4	13,3	12,5	100 mg/L
Nitrates (NO ₃)	134,2	347,1	424,7	463,2	179,6	727,0	522,0	507,4	346,2	573,2	359,6	311,9	1500 mg/L
Chlorures	67,4	129,1	133,8	85,4	83,2	188,4	167,3	137,6	119,2	118,3	74,2	86,4	300 mg/L
DBO5	2,7	6,2	4,0	5,5	4,3	6,0	3,8	3,1	3,7	2,7	2,6	2,8	30 mg/L
Azote Total Organique	3,2	10,5	1,6	0,8	1,9	7,0	2,0	1,5	2,7	2,4	1,3	4,3	30 mg/L
Phosphates	2,0	6,1	4,5	3,3	4,2	5,0	3,3	2,2	3,0	4,2	2,1	2,4	20 mg/L
Sulfates	19,8	36,2	45,5	27,5	25,9	66,3	47,8	42,2	37,3	41,6	18,9	29,1	360 mg/L
Métaux totaux	1,6	1,1	0,7	1,2	1,5	1,3	1,1	1,5	2,0	1,3	1,4	1,1	10 mg/L
Aluminium	0,5	0,6	0,3	0,5	0,7	0,9	0,7	0,8	0,9	0,6	0,5	0,5	5 mg/L
Cadmium	0,002	0,002	0,002	0,002	0,002	0,002	0,002	0,002	0,002	0,002	0,002	0,002	0,2 mg/L
Chrome	0,015	0,020	0,020	0,015	0,020	0,020	0,020	0,020	0,020	0,020	0,020	0,020	0,5 mg/L
Cuivre	0,011	0,009	0,007	0,026	0,012	0,012	0,016	0,015	0,014	0,012	0,011	0,017	0,5 mg/L
Étain	0,008	0,010	0,010	0,008	0,010	0,010	0,010	0,010	0,010	0,010	0,010	0,010	1 mg/L
Fer	1,053	0,448	0,318	0,566	0,700	0,359	0,322	0,683	1,001	0,621	0,825	0,545	5 mg/L
Nickel	0,015	0,020	0,020	0,015	0,016	0,020	0,017	0,020	0,018	0,019	0,020	0,020	0,5 mg/L
Plomb	0,009	0,012	0,011	0,006	0,020	0,020	0,007	0,013	0,012	0,013	0,010	0,015	0,5 mg/L
Zinc	0,072	0,047	0,065	0,161	0,084	0,051	0,063	0,053	0,051	0,058	0,085	0,046	2 mg/L
Détergents	0,071	0,133	0,100	0,072	0,079	0,083	0,050	0,066	0,050	0,059	0,050	0,050	10 mg/L
Hydrazine	0,05	0,05	0,05	0,05	0,05	0,05	0,05	0,05	0,05	0,05	0,05	0,05	0,05 mg/L
Hydrocarbures	0,116	0,100	0,100	0,100	0,100	0,100	0,100	0,100	0,119	0,104	0,100	0,100	5 mg/L

3.3.2. MAXIMUM ANNUELS DES FLUX 2 HEURES ET 24 HEURES GUW

Valeurs en mg/L

Paramètres	Max annuel 2 heures	Limite autorisée 2 heures	Max annuel 24 heures	Limite autorisée 24 heures
рсо	2,0650	6	24,78	30
MES	2,3750	6	28,5	30
Nitrates (NO3)	68,4825	300	821,79	2600
Chlorures	12,4942	80	149,93	500
DBO5	0,6883	2	8,26	10
Azote Total Organique	0,7887	3	9,464	10
Phosphates	0,5059	5	6,0705	30
Sulfates	3,8667	100	46,4000	429
Métaux totaux	0,2835	1	3,4020	6
Aluminium	0,0768	0,3	0,9216	1,8
Cadmium	0,0001	0,01	0,0015	0,07
Chrome	0,0005	0,1	0,0058	0,8
Cuivre	0,0040	0,12	0,0476	0,7
Etain	0,0002	0,06	0,0029	0,35
Fer	0,2484	0,3	2,9806	1,8
Nickel	0,0005	0,1	0,0058	0,8
Plomb	0,0006	0,06	0,0078	0,35
Zinc	0,0218	0,3	0,2620	1,8
Détergents	0,0113	2	0,1357	15
Hydrazine	0,0061	0,008	0,0728	0,08
Hydrocarbures	0,0121	1	0,1456	5

Rejets des eaux pluviales

3.4.1. RÉSULTATS DES ANALYSES MENSUELLES - RUISSEAU DE SAINTE-HÉLÈNE

Résultats des analyses en concentration instantanée

Paramètres	Normes	C° instantannée autorisée	Janv	Fév	Mars	Avril	Mai
DCO	NF EN 872	120 mg/L	10	10	10	10	11
Matières en suspension	NF T 90.101	35 mg/L	4	2	6	3	3
Sels Dissous	XP T 90-109		174	205	186	147	141
Composés Cycliques Hydroxylés	NF T 90.115		0,02	0,02	0,02	0,02	0,02
Hydrocarbures	NF EN ISO 9377-2	5 mg/L	0,1	0,1	0,1	0,1	0,1
Test Vibrio en %	NF EN ISO 6341		> 80 %	> 80%	> 80%	> 80%	> 80%
pH	NF T 90-008	5,5 ≤ pH ≤ 8,5	7,8	7,8	7,7	7,7	7,8

Résultats des analyses en flux 24 heures

Paramètres	Normes	Flux autorisé	Janv	Fév	Mars	Avril	Mai
DCO	NF EN 872						
Matières en suspension	NF T 90.101						
Sels Dissous	XP T 90-109	300 kg	162,8	84,3	111,2	66,0	77,8
Composés Cycliques Hydroxylés	NF T 90.115	0,01 kg	0,0187	0,008	0,012	0,009	0,011
Hydrocarbures	NF EN ISO 9377-2						

3.4.2. RÉSULTATS DES ANALYSES MENSUELLES - RUISSEAU DES MOULINETS

Paramètres	Normes	C° instantannée autorisée	Janv	Fév	Mars	Avril	Mai
DCO	NF EN 872	120 mg/L	10	10	10	10	10
Matières en suspension	NF T 90.101	35 mg/L	6	3	5	2	4
Sels Dissous	XP T 90-109		209	234	236	239	244
Composés Cycliques Hydroxylés	NF T 90.115		0,02	0,02	0,02	0,02	0,02
Hydrocarbures	NF EN ISO 9377-2	5 mg/L	0,1	0,025	0,1	0,1	0,1
Test Vibrio en %	NF EN ISO 6341		> 80%	> 80%	> 80%	> 80%	> 80%
pH	NF T 90-008	5,5 ≤ pH ≤ 8,5	7,8	7,9	7,9	7,8	7,9

Juin	Juil	Août	Sept	Oct	Nov	Déc	Moy.	Mini	Max
10	10	10	11	10	54	10	13,83	10,0	54,0
2	2	2	2	3	2	5	3,0	2,0	6,0
211	237	179	181	193	200	173	185,58	141,0	237,0
0,02	0,02	0,02	0,02	0,02	0,02	0,02	0,02	0,02	0,02
0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1
> 80%	> 80%	> 80%	> 80%	> 80%	> 80%	> 80%	> 80%	> 80%	> 80%
8	7,9	7,7	7,7	7,8	7,8	7,7	7,78	7,7	8,0

Juin	Juil	Août	Sept	Oct	Nov	Déc	Моу.	Min	Maxi
132,9	97,2	100,8	104,3	184,7	1 375,2	996,5	291,1	66,0	1 375,2
0,013	0,008	0,011	0,012	0,019	0,138	0,115	0,031	0,008	0,138

Juin	Juil	Août	Sept	Oct	Nov	Déc	Моу.	Min	Maxi
10	10	10	10	10	10	10	10,0	10,0	10,0
2	2	2	2	2	2	3	2,92	2,0	6,0
265	257	249	247	247	214	211	237	209	265
0,02	0,02	0,02	0,02	0,02	0,02	0,02	0,02	0,02	0,02
0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1
> 80%	> 80%	> 80%	> 80%	> 80%	> 80%	> 80%	> 80%	> 80%	> 80%
8	8	8,1	8	8	7,8	7,7	7,91	7,7	8,1

Résultats des analyses en flux 24 heures

Paramètres	Normes	Flux autorisé	Janv	Fév	Mars	Avril	Mai
DCO	NF EN 872						
Matières en suspension	NF T 90.101						
Sels Dissous	XP T 90-109	300 kg	2993.7	687.3	1 151.7	934.3	2 280.2
Composés Cycliques Hydroxylés	NF T 90.115	0,01 kg	0.29	0.06	0.098	0.078	0.187
Hydrocarbures	NF EN ISO 9377-2						

3.4.3. RÉSULTATS DES ANALYSES MENSUELLES - RUISSEAU DES COMBES

Paramètres	Normes	C° instantannée autorisée	Janv	Fév	Mars	Avril	Mai
DCO	NF EN 872	120 mg/L	24	16	20	16	21
Matières en suspension	NF T 90.101	35 mg/L	16	12	19	5	11
Hydrocarbures	NF EN ISO 9377-2	5 mg/L	0,1	0,1	0,1	0,1	0,1
Test Vibrio en %	NF EN ISO 6341		> 80%	> 80%	> 80%	> 80%	> 80%
рН	NF T ISO 90-008	$5,5 \le pH \le 8,5$	7,5	7,6	7,7	7,6	7,7

Juin	Juil	Août	Sept	Oct	Nov	Déc	Моу.	Min	Maxi
146.3	132.4	149.4	140.0	139.1	3 821.0	2 918.8	1 291.2	132.4	3 821.0
0.011	0.01	0.012	0.011	0.011	0.357	0.277	0,117	0,01	0,357

Juin	Juil	Août	Sept	Oct	Nov	Déc	Moy.	Max	Mini
13	15	21	18	15	20	21	18.3	13	24
6	12	6	21	4	3	8	10.3	3	21
0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1
> 80%	> 80%	> 80%	> 80%	> 80%	> 80%	> 80%	> 80%	> 80%	> 80%
7.5	7,3	7.7	7,4	7,7	7,7	7,6	7,6	7.3	7.7

L'eau de mer au large

Synthèse des résultats d'analyses

Surveillance écologique du milieu marin, en surface et à mi- profondeur à Barneville et au nez de Jobourg

janvier 2023	Barneville en surface	Barneville à mi-profondeur	Nez de Jobourg en surface	Nez de Jobourg à mi-profondeur
T° de l'eau (°C)	9	9	9	9
Salinité (%0)	34,8	34,5	34,5	34,8
Oxygène dissous (mg/L)	8,2	8,2	8,1	8.3
Agents de surface (mg/L)	≤ 0,05	≤ 0,05	≤ 0,05	≤ 0,05
Tributyl phosphate (mg/L)	≤ 0,1	≤ 0,1	≤ 0,1	≤ 0,1
Nitrates (mg/L)	7.25	7.12	7.63	7.52
Nitrites (mg/L)	0,12	0,13	0,13	0,13
Phosphates (mg/L)	0,58	0,58	0,55	0,56
Ammonium (mg/L)	≤ 0,5	≤ 0,5	≤ 0,5	≤ 0,5
Chlorophylle A (µg/L)	1,7	1,3	1.3	1.3
Phéopigments (µg/L)	≤ 0,1	≤ 0,1	≤ 0,1	≤ 0,1

mars 2023	Barneville en surface	Barneville à mi-profondeur	Nez de Jobourg en surface	Nez de Jobourg à mi-profondeur
T° de l'eau (°C)	10	10	9.5	9.5
Salinité (%0)	34,6	34,7	34.5	34,7
Oxygène dissous (mg/L)	8.6	8.5	8.7	8.6
Agents de surface (mg/L)	≤ 0,05	≤ 0,05	≤ 0,05	≤ 0,05
Tributyl phosphate (mg/L)	≤ 0,1	≤ 0,1	≤ 0,1	≤ 0,1
Nitrates (mg/L)	8.13	7.86	9.3	9
Nitrites (mg/L)	0,17	0,19	0.2	0.2
Phosphates (mg/L)	0,46	0,46	0,50	0,49
Ammonium (mg/L)	0,58	0.58	≤ 0,50	≤ 0.50
Chlorophylle A (µg/L)	3	2.6	1,70	1.70
Phéopigments (µg/L)	≤ 0,1	0.13	≤0.1	≤ 0,1

avril 2023	Barneville en surface	Barneville à mi-profondeur	Nez de Jobourg en surface	Nez de Jobourg à mi-profondeur
T° de l'eau (°C)	1	10	9	9
Salinité (%0)	34,5	34,2	34,3	34,4
Oxygène dissous (mg/L)	10.4	10.2	9.9	9.7
Agents de surface (mg/L)	≤ 0,05	≤ 0,05	≤ 0,05	0,05
Tributyl phosphate (mg/L)	≤ 0,1	≤ 0,1	≤ 0,1	≤ 0,1
Nitrates (mg/L)	4.06	3.99	3.88	3.99
Nitrites (mg/L)	0,13	0,14	0.13	0.14
Phosphates (mg/L)	0,34	0,35	0,34	0,35
Ammonium (mg/L)	0.58	≤ 0.50	0.51	≤ 0.50
Chlorophylle A (µg/L)	2.6	0.43	2.6	2.2
Phéopigments (µg/L)	0,13	4.1	≤ 0,1	≤ 0,1

mai 2023	Barneville en surface	Barneville à mi-profondeur	Nez de Jobourg en surface	Nez de Jobourg à mi-profondeur
T° de l'eau (°C)	14	11	13	10
Salinité (%0)	33.9	34.5	34,3	34,4
Oxygène dissous (mg/L)	8	8.9	8.7	8.6
Agents de surface (mg/L)	≤ 0,05	≤ 0,05	≤ 0,05	≤ 0,05
Tributyl phosphate (mg/L)	≤ 0,1	≤ 0,1	≤ 0,1	≤ 0,1
Nitrates (mg/L)	0,08	≤ 0,08	≤ 0,08	≤ 0,08
Nitrites (mg/L)	0,06	0,04	0,05	0,05
Phosphates (mg/L)	0,16	0,16	0,19	0,18
Ammonium (mg/L)	1.08	≤ 0,50	0.51	0.80
Chlorophylle A (µg/L)	1.3	1.7	1.3	0.86
Phéopigments (μg/L)	≤ 0,10	≤ 0,10	≤ 0,1	≤ 0,1

juin 2023	Barneville en surface	Barneville à mi-profondeur	Nez de Jobourg en surface	Nez de Jobourg à mi-profondeur
T° de l'eau (°C)	14	14	13	13
Salinité (%0)	33.9	33.9	33.2	33.2
Oxygène dissous (mg/L)	8.9	8.9	8.9	8.8
Agents de surface (mg/L)	≤ 0,05	≤ 0,05	≤ 0,05	≤ 0,05
Tributyl phosphate (mg/L)	≤ 0,1	≤ 0,1	≤ 0,1	≤ 0,1
Nitrates (mg/L)	1.29	1.19	2.04	1.67
Nitrites (mg/L)	0.09	0.09	0.2	0.19
Phosphates (mg/L)	0,27	0,23	0,35	0,31
Ammonium (mg/L)	≤ 0.50	≤ 0,50	0.8	0.8
Chlorophylle A (µg/L)	0,43	6,5	4.8	4.3
Phéopigments (µg/L)	0,17	≤ 0,10	≤ 0,10	≤ 0,10

juillet 2023	Barneville en surface	Barneville à mi-profondeur	Nez de Jobourg en surface	Nez de Jobourg à mi-profondeur
T° de l'eau (°C)	17	15	16	14
Salinité (%0)	34	33.9	33.8	34
Oxygène dissous (mg/L)	8,8	8,8	9	9
Agents de surface (mg/L)	≤ 0,05	0,05	≤ 0,05	≤ 0,05
Tributyl phosphate (mg/L)	≤ 0,1	≤ 0,1	≤ 0,1	≤ 0,1
Nitrates (mg/L)	≤ 0,08	≤ 0,08	≤ 0,08	≤ 0,08
Nitrites (mg/L)	≤ 0,04	≤ 0,04	≤ 0,04	≤ 0,04
Phosphates (mg/L)	0,14	0,14	0,15	0,14
Ammonium (mg/L)	≤ 0,50	≤ 0,50	≤ 0.50	0.8
Chlorophylle A (µg/L)	1.3	1.7	1.7	1.3
Phéopigments (µg/L)	≤ 0,10	≤ 0,10	≤ 0,10	≤ 0,10

août 2023	Barneville en surface	Barneville à mi-profondeur	Nez de Jobourg en surface	Nez de Jobourg à mi-profondeur
T° de l'eau (°C)	17	17	16	16
Salinité (%0)	34,3	34,4	34,1	34,4
Oxygène dissous (mg/L)	8,4	8,8	8.9	9
Agents de surface (mg/L)	≤ 0,05	≤ 0,05	≤ 0,05	≤ 0,05
Tributyl phosphate (mg/L)	≤ 0,1	≤ 0,1	≤ 0,1	≤ 0,1
Nitrates (mg/L)	≤ 0,08	≤ 0,08	1.09	1.06
Nitrites (mg/L)	≤ 0,04	≤ 0,04	0,17	0,18
Phosphates (mg/L)	0,45	0,23	0,26	0,50
Ammonium (mg/L)	0,65	≤ 0.5	1,15	0,72
Chlorophylle A (µg/L)	3	3	1,7	1.7
Phéopigments (µg/L)	≤ 0,10	≤ 0,10	≤ 0,10	≤ 0,10

septembre 2023	Barneville en surface	Barneville à mi-profondeur	Nez de Jobourg en surface	Nez de Jobourg à mi-profondeur
T° de l'eau (°C)	15	14	14	13
Salinité (%0)	33.9	34,1	34,1	34,2
Oxygène dissous (mg/L)	8,4	8,5	8,1	8,4
Agents de surface (mg/L)	≤ 0,05	≤ 0,05	≤ 0,05	≤ 0,05
Tributyl phosphate (mg/L)	≤ 0,1	≤ 0,1	≤ 0,1	≤ 0,1
Nitrates (mg/L)	0.55	0.53	0.43	0.41
Nitrites (mg/L)	0.08	0.09	0.08	0.09
Phosphates (mg/L)	0.32	0.32	0.33	0.31
Ammonium (mg/L)	0.8	1.08	0.8	0.8
Chlorophylle A (µg/L)	2.2	2.6	0.43	1.3
Phéopigments (µg/L)	≤ 0,10	≤ 0,10	≤ 0,10	≤ 0,10

octobre 2023	Barneville en surface	Barneville à mi-profondeur	Nez de Jobourg en surface	Nez de Jobourg à mi-profondeur
T° de l'eau (°C)	11	13	12	13
Salinité (%0)	34,3	34,3	34,2	34,2
Oxygène dissous (mg/L)	9.2	8,7	9	9
Agents de surface (mg/L)	≤ 0,05	≤ 0,05	≤ 0,05	≤ 0,05
Tributyl phosphate (mg/L)	≤ 0,1	≤ 0,1	≤ 0,1	≤ 0,1
Nitrates (mg/L)	2.37	2.31	2.37	2.31
Nitrites (mg/L)	0,53	0,51	0,54	0,53
Phosphates (mg/L)	0,43	0,39	0,39	0,45
Ammonium (mg/L)	0,87	0,72	0,72	0,65
Chlorophylle A (µg/L)	1.3	1.3	0,86	0,86
Phéopigments (μg/L)	≤ 0,10	≤ 0,10	≤ 0,10	≤ 0,10

L'eau de mer dans l'anse des Moulinets

Synthèse des analyses de l'eau de mer de l'Anse des Moulinets en 2023

Prélèvements mensuels effectués au centre, à gauche et à droite de la plage. Pas de limites spécifiques pour l'eau de mer. es spécifiques pour l'eau de mer.

Limites réglementaires

E coli Entérocoques 2 000 nb / 100 mL 100 nb / 100 mL

Point de prélèvement	Date	Paramètres Nitrates mg/L	Détergents anioniques mg/L	E coli nb/100 mL	Entérocoques nb/100 mL
Gauche de la grève		0,6	≤ 0,05	≤ 15	≤ 15
Centre de la grève	10/01/2023	0,6	≤ 0,05	15	15
Droite de la grève		0,6	≤ 0,05	≤ 15	≤ 15
Gauche de la grève		0.6	≤ 0,05	≤ 15	≤ 15
Centre de la grève	08/02/2023	0.6	≤ 0,05	≤ 15	≤ 15
Droite de la grève		1.1	≤ 0,05	≤ 15	≤ 15
Gauche de la grève		3,6	≤ 0,05	≤ 15	≤ 15
Centre de la grève	30/03/2023	3.6	0.061	15	≤ 15
Droite de la grève		4.3	≤ 0,05	≤ 15	≤ 15
Gauche de la grève		0.5	0.11	≤ 15	≤ 15
Centre de la grève	05/04/2023	0.5	≤ 0,05	≤ 15	15
Droite de la grève		0.5	0.073	≤ 15	≤ 15
Gauche de la grève		1.2	≤ 0,05	≤ 15	≤ 15
Centre de la grève	10/05/2023	1.2	≤ 0,05	15	≤ 15
Droite de la grève		1.2	≤ 0,05	15	≤ 15
Gauche de la grève	_	9.8	≤ 0,05	≤ 15	≤ 15
Centre de la grève	08/06/2023	10.5	≤ 0,05	≤ 15	≤ 15
Droite de la grève		6.2	≤ 0,05	≤ 15	≤ 15
Gauche de la grève	11/07/2023	17.1	≤ 0,05	≤ 15	15
Centre de la grève		16.9	≤ 0,05	15	≤ 15
Droite de la grève		21.8	≤ 0,05	≤ 15	≤ 15
Gauche de la grève		1.4	0.071	≤ 15	15
Centre de la grève	09/08/2023	1.4	0.052	≤ 15	≤ 15
Droite de la grève		1.4	≤ 0,05	≤ 15	≤ 15
Gauche de la grève		3.6	≤ 0,05	15	≤ 15
Centre de la grève	06/09/2023	4.1	≤ 0,05	≤ 15	≤ 15
Droite de la grève		3.7	≤ 0,05	≤ 15	≤ 15
Gauche de la grève		3.8	≤ 0,05	215	30
Centre de la grève	04/10/2023	2.2	≤ 0,05	160	46
Droite de la grève		1.8	≤ 0,05	175	46
Gauche de la grève	_	1.3	≤ 0,05	46	≤ 15
Centre de la grève	23/11/2023	1.1	≤ 0,05	61	≤ 15
Droite de la grève	_	1.2	≤ 0,05	94	≤ 15
Gauche de la grève		1.2	≤ 0,05	≤ 15	≤ 15
Centre de la grève	14/12/2023	1.2	≤ 0,05	≤ 15	≤ 15
Droite de la grève		1.2	≤ 0,05	30	≤ 15

La nappe **phréatique**

Résultats des espèces chimiques des eaux souterraines

Eaux souterraines - Premier semestre 2023

Laux Souterraines	FIGHICI SCHOOL COLO							
	PZ103	PZ113	PZ118	PZ140	PZ232	PZ270	PZ275	PZ320
Date de prélèvement	29/03/2023	29/03/2023	29/03/2023	29/03/2023	29/03/2023	29/03/2023	29/03/2023	29/03/2023
рН	6,2	5	6,8	6,7	5,5	6,3	5,6	5,5
Conductivité (µs/cm)	3,05E+02	3,22E+02	2,95E+02	2,14E+02	2,58E+02	2,26E+02	2,23E+02	1,87E+02
COT (mg/l)	3,70E+00	3,40E+00	7,00E-01	1,30E+00	1,40E+00	3,00E-01	1,90E+00	1,70E+00
DCO (mg/l O2)	≤ 1.00E+01	≤ 1,10E+01	≤ 1.00E+01					
Hydrocarbure (mg/l)	≤ 1.00E-01	≤ 1.00E-01	≤ 1.00E-01	≤ 1.00E-01	≤ 1.00E-01	≤ 1.00E-01	≤ 1.00E-01	≤ 1.00E-01
NH4 (mg/l)	≤ 5.00E-02	≤ 5.00E-02	≤ 9,00E-02	≤ 5.00E-02				
NO2 (mg/l)	≤ 1.00E-02	≤ 1.00E-02	≤ 1.00E-02	≤ 1.00E-02	≤ 1.00E-02	≤ 1.00E-02	≤ 1.00E-02	≤ 1.00E-02
NO3 (mg/l)	1,12E+01	3,08E+01	2,06E+01	7,40E+00	6,50E+00	6,10E+00	9,00E-01	1,02E+01
N (mg/l)	7,00E-01	6,00E-01	≤ 5.00E-01					
Co (mg/l)	≤ 1.00E-03	1,40E-03	≤ 1.00E-03	≤ 1,20E-03	1,10E-03	≤ 1.00E-03	4,20E-03	≤ 1.00E-03
Pb (mg/l)	4,00E-03	≤ 9,00E-04	≤ 8.00E-04	4,20E-03	≤ 1,20E-03	≤ 8.00E-04	≤ 8.00E-04	2,50E-03
Hg (mg/l)	2,40E-03	≤ 5.00E-05	≤ 5.00E-05	≤ 5,80E-05	≤ 5.00E-05	≤ 5.00E-05	1,10E-03	9,00E-05
Cd (mg/l)	≤ 6,10E-05	≤ 5,10E-05	≤ 5.00E-05	≤ 5.00E-05	≤ 5.00E-05	≤ 5.00E-05	≤ 5,20E-05	≤ 5.00E-05
Ni (mg/l)	5,00E-03	3,00E-03	4,00E-03	≤ 2,00E-03	5,00E-03	≤ 2.00E-03	≤ 2.00E-03	6,00E-03
Fe (mg/l)	5,00E-02	4,80E-01	2,30E-02	6,48E-01	1,20E-02	7,43E+00	7,80E-02	≤ 1.00E-02
Al (mg/l)	6,00E-02	1,24E+00	≤ 1,10E-02	3,11E+00	3,40E-02	1,70E-02	1,23E-01	1,59E-01
Cr (mg/l)	≤ 2.00E-03	≤ 2.00E-03	≤ 7,00E-03	4,00E-03	≤ 2.00E-03	≤ 2.00E-03	≤ 2.00E-03	≤ 2.00E-03
Cu (mg/l)	1,80E-02	≤ 2,30E-03	≤ 3,50E-03	≤ 2,90E-03	≤ 1,50E-03	≤ 1.00E-03	≤ 1.00E-03	≤ 1,90E-03
Zn (mg/l)	1,15E+00	≤ 1.00E-02	1,00E-02	≤ 1,00E-02	≤ 1.00E-02	≤ 1.00E-02	≤ 1.00E-02	1,20E-02
Mn (mg/l)	1,90E-02	1,16E-01	≤ 2.00E-03	4,20E-02	1,90E-02	1,10E-02	2,86E-01	3,20E-02
SO4 (mg/l)	1,80E+01	3,90E+01	1,50E+01	1,40E+01	3,70E+01	1,20E+01	1,90E+01	1,90E+01

PZ345	PZ359	PZ500	PZ600	PZ714
29/03/2023	29/03/2023	29/03/2023	29/03/2023	29/03/2023
5,8	6,1	5,7	7,1	5,4
2,89E+02	2,87E+02	2,05E+02	1,02E+03	2,95E+02
4,00E-01	1,00E+00	2,70E+00	2,30E+01	9,00E-01
≤ 1.00E+01				
≤ 1.00E-01				
≤ 5.00E-02	≤ 5,00E-02	≤ 5.00E-02	6,80E-01	≤ 5.00E-02
≤ 1.00E-02				
5,20E+00	1,89E+01	9,50E+00	≤ 5.00E-01	1,69E+01
≤ 5.00E-01	≤ 5.00E-01	≤ 2,10E+00	6,00E-01	≤ 5.00E-01
2,30E-03	6,00E-03	≤ 1.00E-03	≤ 1.00E-03	≤ 1.00E-03
≤ 8.00E-04	4,00E-03	2,90E-03	≤ 8.00E-04	≤ 1,30E-03
3,70E-03	≤ 5,00E-05	≤ 5.00E-05	≤ 5.00E-05	8,20E-05
≤ 7,30E-05	≤ 5,90E-05	≤ 5.00E-05	≤ 5.00E-05	≤ 5,80E-05
2,00E-03	3,00E-03	≤ 2.00E-03	≤ 2.00E-03	2,00E-03
5,90E-02	9,24E-01	3,94E-01	3,35E+02	1,92E+00
8,90E-02	1,25E+00	5,57E-01	1,17E+00	4,60E-02
≤ 2.00E-03				
≤ 1.00E-03	≤ 1,60E-03	3,70E-03	≤ 1,70E-03	≤ 2,40E-03
1,30E-02	1,00E-02	≤ 1.00E-02	≤ 1.00E-02	≤ 1.00E-02
7,20E-02	1,04E-01	2,50E-02	1,99E+00	1,40E-02
2,20E+01	3,20E+01	2,10E+01	1,40E+01	4,10E+01

Eaux souterraines - Second semestre 2023

	PZ103	PZ113	PZ118	PZ140	PZ232	PZ270	PZ275	PZ320
Date de prélèvement	17/10/2023	17/10/2023	17/10/2023	17/10/2023	17/10/2023	17/10/2023	17/10/2023	17/10/2023
рН	5,5	5,3	6,5	6,3	5,5	5,9	5,1	5,3
Conductivité (µs/cm)	2,92E+02	3,16E+02	2,96E+02	2,03E+02	2,63E+02	2,35E+02	2,07E+02	1,89E+02
COT (mg/l)	1,30E+00	7,00E-01	6,00E-01	1,10E+00	1,60E+00	3,00E-01	1,90E+00	1,90E+00
DCO (mg/l O2)	≤ 1.00E+01							
Hydrocarbure (mg/l)	≤ 1.00E-01							
NH4 (mg/l)	≤ 5.00E-02	≤ 7,00E-02	≤ 5.00E-02	≤ 1,60E-01				
NO2 (mg/l)	≤ 1.00E-02	6,00E-02	≤ 3,00E-02	≤ 1.00E-02				
NO3 (mg/l)	1,24E+01	1,37E+01	1,91E+01	9,50E+00	6,20E+00	8,90E+00	≤ 5.00E-01	9,60E+00
N (mg/l)	≤ 5.00E-01							
Co (mg/l)	≤ 1,50E-03	≤ 1.00E-03	≤ 1.00E-03	≤ 1.00E-03	1,20E-03	≤ 1.00E-03	4,40E-03	≤ 1.00E-03
Pb (mg/l)	1,70E-02	≤ 8.00E-04	≤ 8.00E-04	3,00E-03	2,00E-03	≤ 8.00E-04	≤ 8.00E-04	2,00E-03
Hg (mg/l)	8,00E-03	≤ 5.00E-05	1,00E-04	7,90E-05				
Cd (mg/l)	1,31E-04	5,00E-04	≤ 5.00E-05	≤ 5.00E-05	4,90E-05	≤ 5.00E-05	7,50E-05	≤ 5.00E-05
Ni (mg/l)	2,30E-02	6,00E-03	≤ 2.00E-03	≤ 2.00E-03	≤ 5,00E-03	≤ 2.00E-03	≤ 2.00E-03	3,00E-03
Fe (mg/l)	1,12E-01	1,45E-01	9,00E-03	4,66E-01	1,70E-02	3,47E-01	7,10E-02	7,00E-03
Al (mg/l)	2,44E-01	2,48E-01	8,00E-03	8,90E-01	3,40E-02	9,00E-03	1,51E-01	1,87E-01
Cr (mg/l)	2,00E-03	≤ 2.00E-03						
Cu (mg/l)	2,20E-02	≤ 2,00E-03	1,00E-03	1,00E-03	2,00E-03	≤ 1.00E-03	≤ 1.00E-03	2,00E-03
Zn (mg/l)	9,95E-01	≤ 1,10E-02	8,00E-03	4,00E-03	≤ 1,50E-02	4,00E-03	≤ 6,00E-03	1,30E-02
Mn (mg/l)	4,10E-02	8,20E-02	≤ 2.00E-03	2,30E-02	2,00E-02	1,29E-01	3,53E-01	3,10E-02
SO4 (mg/l)	1,50E+01	1,30E+01	1,60E+01	2,10E+01	3,90E+01	1,10E+01	2,30E+01	2,20E+01

PZ345	PZ359	PZ500	PZ600	PZ714
17/10/2023	17/10/2023	17/10/2023	17/10/2023	17/10/2023
5,8	5,8	5,2	7,2	5,3
2,93E+02	2,79E+02	2,04E+02	9,53E+02	2,98E+02
4,00E-01	1,00E+00	2,40E+00	2,90E+00	8,00E-01
≤ 1.00E+01	≤ 1.00E+01	1,10E+01	≤ 1,60E+01	≤ 1.00E+01
≤ 1.00E-01				
≤ 8,00E-02	5,00E-02	8,00E-02	1,47E+00	≤ 8,00E-02
≤ 1.00E-02				
3,80E+00	2,00E+01	1,02E+01	≤ 5.00E-01	1,78E+01
≤ 5.00E-01	≤ 5.00E-01	2,40E+00	2,20E+00	≤ 5.00E-01
2,30E-03	1,80E-03	≤ 1.00E-03	≤ 1.00E-03	≤ 1.00E-03
≤ 8.00E-04	2,00E-03	6,00E-03	≤ 8.00E-04	≤ 8.00E-04
4,00E-03	≤ 5.00E-05	≤ 6,80E-05	7,30E-05	≤ 8,60E-05
7,70E-05	5,60E-05	6,10E-05	≤ 5.00E-05	6,30E-05
≤ 2.00E-03				
7,90E-02	1,27E+00	7,23E-01	3,82E+01	3,40E-01
1,33E-01	1,10E+00	6,58E-01	3,90E-02	4,10E-02
≤ 2.00E-03				
≤ 1.00E-03	1,80E-03	1,20E-02	5,00E-03	6,00E-03
1,10E-02	9,00E-03	1,90E-02	7,00E-03	1,30E-02
6,60E-02	5,70E-02	4,50E-02	1,08E+00	1,20E-02
2,30E+01	3,30E+01	2,30E+01	≤ 5.00E+00	4,00E+01

BIBLIOGRAPHIE -ÉTUDES

Le fonctionnement et l'impact de l'établissement Orano la Hague font l'objet d'une attention particulière. Aussi de nombreuses études et publications scientifiques lui sont consacrées.

Parmi les plus récentes, on peut citer :

- « Rapports DEI-SESURE » (IRSN)
- « Etude Marina II » pour le compte de la communauté européenne (DG Environnement) - Août 2002
- « Population mixing and leukoemia in young poeple around the La Hague nuclear waste processing plant » O. Boutou; A.V Guizard; R. Slama; D. Pottier; A. Spira
 British Journal of Cancer (2002) 87
- « Analyse de sensibilité et d'incertitude sur le risque de leucémie attribuable aux installations nucléaires du Nord-Cotentin » GRNC - Juillet 2002
- « Identification of sources and distribution of radio carbon in the vicinity of La Hague nuclear reprocessing plant »
 IRSN/SERNAT - ECORAD 2001 - Edition F. Brichignac - Vol. 37 - C1 p 1271 - 1276
- « A study of the near field atmospheric dispersion of emissions at height: Comparaison of Gaussian plume models with Krypton 85 measurements taken around La Hague nuclear reprocessing plant »
 IRSN/SERNAT- ECORAD 2001 - Edition F. Brichignac - Vol. 37 - C1 p 1277 - 1281
- « Analyse des mesures chimiques effectuées sur les ruisseaux du Nord de La Hague » Rapport DPRE/SERNAT/LERFA/2001-40
- « Mesure du chlore 36 dans l'environnement terrestre du centre de retraitement de La Hague » Rapport DPRE/SERNAT/2002-17
- « Le centre de retraitement de COGEMA La Hague et l'effet de serre »; bilan des connaissances disponibles sur les rejets du centre Rapport DPRE/SERNAT/2002-31
- « Rejet d'iode 129 dans les effluents radioactifs liquides et gazeux des usines COGEMA La Hague » (GRNC - octobre 2002)
- Rapport du groupe de travail « Ruthénium » (GRNC octobre 2002)

- « Évaluation des risques associés aux rejets radiologiques et chimiques des installations du Nord Cotentin »
 GRNC - décembre 2002
- « Inventaire des rejets chimiques des installations nucléaires du Nord Cotentin » GRNC - décembre 2002
- « Risques pour la santé: évaluation des risques associés aux rejets chimiques des installations nucléaires du Nord Cotentin »
 GRNC - décembre 2002.
- « Risques pour l'environnement : évaluation des risques associés aux rejets chimiques des installations nucléaires du Nord Cotentin » GRNC - décembre 2002
- « TRANSMER : modèle de simulation des transferts de radionucléides en Manche et Mer du Nord »
 Rapport IRSN/DPRE/SERNAT/2003-04
- « In situ metrology of Kr85 plumes reased by CO-GEMA La Hague nuclear reprocessing plant » Journal of Environmental Radioactivity - Volume 72 pp 137-144,
- « Évaluation des doses reçues par les biocénoses marines relatives aux rejets radioactifs en mer de l'usine de COGEMA La Hague » Rapport SENES Consultants Limited - juillet 2003
- « Radiocarbon behaviour in seawater and the brown algae Fucus serratus in the vicinity of the COGEMA La Hague spent fuel reprocessing plant (Goury) - France »
 Journal of Environmental Radioactivity - 2004
- « Carbone 14 et tritium le long des côtes de l'Atlantique et de la Manche »
 Rapport d'état d'avancement DEI/SECRE 2004-20 2004
- « Détermination de la stabilité atmosphérique selon la classification de PASQUILL sur le site de l'usine COGEMA La Hague »
 Rapport DEI/SECRE - 2004-14 - 2004
- « Validation of the local-scale atmospheric dispersion model CEDRAT on ground level 85Kr measurement campaignsover cap de La Hague »
 9th Int. Conf. On Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes CONGRES GARMISH-PARTENKIRCHEN PROCEEDINGS VOL1 2004
- « Comparison betxeen different methods used to

determine PASQUIL stability classes, application to the case of the fuel nuclear reprocessing plant of La Hague »

9th Int. Conf. On Harmonisation within Atmospheric DispersionModelling for Regulatory Purposes CONGRES GARMISH-PARTENKIRCHEN - PROCEEDINGS VOL1 - 2004

- « Mise à jour de données scientifiques suite aux recommandations du groupe radioécologie Nord-Cotentin (GRNC) formulées en 1999 » Radioprotection - Volume 39,1, pp. 77-98 - 2004
- « In situ metrology of 85 Kr plumes reased by the COGEMA La Hague nuclear reprocessing plant » Journal of Environmental Radioactivity - Volume 72 pp. 137-144 - 2004
- « Tritium along the french coast of the english Channe »
 Radioprotection - Volume 40 p 621- 627 - 2004
- « Comparisson oh the local scale atmospheric dispersion model CEDRAT with Kr 85 measurements »

Radioprotection - Volume 40 p 371- 337 - 2004

- « Measurement of the carbone 14 activity at natural level in air samples »
 Radioprotection Volume 40 p 391- 396 2004
- « Transfer of radiocarbon liquid releases from the AREVA La Hague spent fuel reprocessing plant in the English Channel » Journal of Environnement Radioactivity - Volume XX p 1 - 24 - 2006

Extrait de « Évaluation des doses reçues par les biocénoses marines relatives aux rejets radioactifs en mer de l'usine AREVA la Hague »

(Rapport SENES Consultants Limited - juillet 2003) Synthèse

Cette étude présente une évaluation des doses radiologiques reçues par les biocénoses marines relatives aux rejets radioactifs en mer de l'usine ARE-VA La Hague. L'usine de La Hague est située dans le nord-ouest de la France, à la pointe nord-ouest de la presqu'île du Cotentin, sur les côtes sud de la Manche. La faune et la flore marines côtières et proches du rivage, près de La Hague, sont typiques de celles des côtes bretonnes, à proximité, dont le Nord-Cotentin marque la limite est du domaine d'un bon nombre d'espèces marines. La présente étude de cas est essentiellement basée sur les nombreuses

données disponibles provenant des récentes études du Groupe Radioécologie Nord-Cotentin (GRNC)⁽¹⁾, ainsi que sur la récente évaluation de l'impact de l'usine de La Hague sur l'environnement (dossier d'enquête publique réalisée en 2000).

L'objectif principal de cette étude était de choisir un ensemble représentatif d'espèces marines sur la zone d'étude (c'est-à-dire le long de la presqu'île du Nord-Cotentin) et d'évaluer les impacts radiologiques potentiels, en termes de débits de dose sur les biocénoses et d'effets potentiels sur leur santé.

Les débits de dose calculés ont été comparés d'une part aux valeurs guides disponibles pour la protection des populations d'espèces vivantes non humaines publiées par l'UNSCEAR et l'AIEA, au-dessus desquelles, dans l'état actuel des connaissances, des effets nocifs et mesurables sur la faune et la flore marines seraient attendus et d'autre part à des valeurs guides déterminées à partir d'une revue sélective d'une base de données récente sur les effets biologiques des rayonnements ionisants sur les espèces vivantes non humaines (FASSET 2002)⁽²⁾.

Les principales conclusions de cette étude de cas sont d'une part que les débits de dose estimés pour les espèces marines relatifs aux rejets radioactifs en mer de l'usine de La Hague, sont faibles et, en général, bien en dessous des valeurs guides publiées par l'UNSCEAR et l'AIEA et d'autre part que ces débits de dose sont aussi, en général, bien en dessous des débits de dose associés au bruit de fond radioactif (lié à l'activité humaine et naturel) dans la région.

Ces conclusions et les estimations de débits de dose de cette étude sont en accord avec celles de l'étude MARINAII⁽³⁾, concernant le Cap de La Hague, une étude de référence publiée en 2002 et réalisée pour le compte de la Commission Européenne.

L'étude de cas de l'usine de La Hague a été présentée et discutée à l'occasion d'un atelier rassemblant des experts internationaux à La Hague le 15 avril 2003. Les participants de l'atelier avaient préalablement reçu une copie du projet de rapport final de l'étude.

L'atelier a permis d'établir une appréciation consensuelle sur l'étude dont l'objectif est de résumer les principales observations et points d'accord provenant des apports et des débats des experts lors de l'atelier. Le projet de texte élaboré pour rendre compte de cette appréciation consensuelle a ensuite été soumis à l'examen des experts de l'atelier pour commentaires.

Un consensus général parmi les participants de l'atelier a été trouvé sur les conclusions principales de l'étude de cas de l'usine de La Hague (telles qu'indiquées ci-dessus).Des contrôles sont effectués mensuellement sur 3 stations et trimestriellement sur 9 forages.

⁽¹⁾Le GRNC a été mis en place à l'initiative de l'Etat français en 1997. Il est composé d'experts issus de diverses parties prenantes : agences gouvernementales, exploitants, ONG, laboratoires et organismes étrangers. La tâche principale du GRNC était de réaliser :

- un examen et une analyse en profondeur (y compris la validation des données) de l'historique des données radioécologiques (à la fois les émissions courantes et les rejets accidentels) fournies par différents organismes et les exploitants, et
- une évaluation rétrospective de la dose et du risque (comprenant le développement et la validation de la modélisation) pour la population du Nord-Cotentin.

Sur cette base, deux rapports des groupes de travail techniques du GRNC (GT2 et GT3) présentent un intérêt particulier pour cette évaluation :

 une étude critique des mesures dans l'environnement (GT2, GRNC, 1999a), et des modèles pour le transfert des radionucléides dans l'environnement (GT3, GRNC, 1999b).

⁽²⁾FASSET, sigle correspondant à l'appellation anglaise Framework for ASSessment of Environmental impacT et signifiant "cadre d'évaluation de l'impact sur l'environnement", désigne un important projet de recherche européen subventionné par la Commission Européenne qui comprend un ensemble d'études spécifiques sur les fondements de l'évaluation des biocénoses marines susceptibles d'être exposées aux rayonnements ionisants, comportant l'identification d'espèces représentatives (dites "de référence") pour les écosystèmes marins européens et une base de données approfondie sur les doses et effets chez ces biocénoses.

(3)MARINA II est un ensemble d'études commanditées par la Commission des Communautés Européennes visant à fournir à OSPAR des informations sur les rejets radioactifs, les concentrations et une évaluation de leur impact. Entre autres, MARINA II donne des résultats de débits de dose pour un nombre limité de catégories d'espèces représentatives de l'environnement marin des régions côtières proches de l'usine de AREVA La Hague et de l'usine BNFL à Sellafield. MARINA II comprend aussi des valeurs guides pour la protection des espèces vivantes non humaines. OSPAR est la Convention d'Oslo Paris pour la protection de l'environnement marin du nord-est de l'Atlantique.

Contexte

En juillet 2002, la société SENES Consultants Limited (SENES) a été retenue par Orano pour conduire une évaluation des doses radiologiques reçues par les biocénoses marines relatives aux rejets radioactifs en mer de l'usine d'Orano la Haque.

L'évaluation a surtout porté sur les zones situées le long de la côte du Nord-Cotentin, qui comprennent un ensemble de lieux côtiers comme, par exemple, Goury, Barfleur, Carteret et Cherbourg. Ces lieux côtiers sont regroupés en quatre zones : la zone de La Hague, la zone de la côte nord, la zone de la côte ouest et la zone de la côte est.

De plus, trois lieux spécifiques (Les Huquets, Les Moulinets et la Rade de Cherbourg), qui pourraient être davantage affectés par les rejets en mer de l'usine de La Hague, en raison de leur localisation ou des incidents survenus dans le passé, sont considérés séparément.

Il est important de souligner que les courants marins dans la zone de La Hague sont extrêmement forts, et parmi les plus élevés d'Europe, surtout entre l'extrémité nord-ouest de la presqu'île du Cotentin et l'Île d'Aurigny où est située la conduite de rejet de l'usine de La Hague, en pleine mer, à environ 1,7 km du site côtier dénommé le Nez de Jobourg. A environ 500 m du point de rejet en mer de la conduite, le facteur de dispersion des effluents atteint une valeur d'environ 100 000.

Avec les forts courants marins qui caractérisent la région, les espèces vivantes ont tendance à se concentrer et à proliférer dans les zones rocheuses, le long de la côte du Nord-Cotentin, qui offre une protection contre les courants. Loin de la côte, cette protection est moindre, surtout dans les zones à fonds sablonneux et boueux, et il peut être plus difficile pour ces espèces de s'y installer et de survivre.

Les algues sessiles sont particulièrement abondantes le long de la côte et constituent l'élément principal de structure de l'habitat de nombreux organismes. Un bon nombre d'espèces propres à la consommation humaine, tels que les homards, les crabes, les bulots, les coquilles Saint-Jacques, les calmars et différentes espèces de poissons sont également présentes le long de la côte du Nord-Cotentin

La faune et la flore marines côtières et proches du rivage du Cap de La Hague sont typiques de celles rencontrées sur les côtes bretonnes voisines, et le Nord-Cotentin constitue la limite est des domaines d'un certain nombre d'espèces marines. Les courants marins extrêmement forts et les fonds boueux et sablonneux qui caractérisent la zone de rejets en mer rendent la présence de ces espèces clairsemée et transitoire.

Conclusions

En ce qui concerne l'objectif principal de l'étude, sur les bases des informations disponibles dans l'étude la plus récente de l'impact sur l'environnement de l'usine Orano La Hague et des études du GRNC, un ensemble représentatif de biocénoses marines a été sélectionné pour la zone d'étude (lieux côtiers du Nord-Cotentin, avec un intérêt particulier pour le lieu où l'impact devrait être le plus élevé, c'est-à-dire dans la zone de Goury).

Les impacts potentiels sur les biocénoses marines représentatives relatifs aux rejets radioactifs en mer de l'usine de La Hague ont été évalués. Ces impacts ont été exprimés en termes de débit de dose auxquels seraient soumis les biocénoses et d'effets potentiels sur leur santé.

Les débits de dose ont été comparés aux valeurs guides génériques pour la protection des populations de biocénoses marines, soit publiées par l'UNSCEAR et l'AIEA, soit déduites par SENES à partir d'une récente base de données sur les effets biologiques des rayonnements ionisants sur les espèces non humaines (FASSET 2002).

Cette étude indique que les débits de dose estimés relatifs aux rejets radioactifs en mer de l'usine de La Hague auxquels seraient soumis les biocénoses marines sont faibles et, en général, bien en dessous des valeurs guides. Ces débits de dose sont également, en général, bien en dessous des débits de dose provenant du bruit de fond radioactif dans la région.

En ce qui concerne le second objectif de l'étude qui consistait à comparer cette évaluation aux recommandations de FASSET et aux résultats de l'étude MARINA II, et à identifier les suites possibles de l'étude, les points suivants sont précisés :

· Les catégories d'espèces sélectionnées sont

cohérentes avec les suggestions émises dans FASSET pour les écosystèmes marins européens, bien que toutes les catégories d'espèces indiquées dans FASSET n'aient pas été évaluées dans notre étude en raison des limites ou de la non-applicabilité des données spécifiques au site

Les résultats des débits de dose pour la zone côtière de Goury sont généralement comparables à ceux de MARINA II pour la région du Cap de La Hague. Par ailleurs, la conclusion principale est semblable dans les deux études, à savoir qu'aucun impact identifiable relatif aux rejets radioactifs n'est attendu parmi les populations de biocénoses marines.

GLOSSAIRE

A

Activité

Nombre de désintégrations spontanées de noyaux atomiques par unité de temps. L'unité d'activité est le Becquerel (Bq).

Aérosol

Particules très fines d'un liquide dans un gaz (air ou oxygène).

AIEA

Agence Internationale de l'Energie Atomique ; organisation internationale sous contrôle de l'ONU, dont le rôle est de favoriser l'utilisation pacifique de l'énergie nucléaire et de contrôler que les matières nucléaires détenues par les utilisateurs ne sont pas détournées pour des usages militaires.

ALARA

Acronyme de « As low as reasonably achievable », c'est-à-dire le niveau le plus faible qu'il soit raisonnablement possible d'atteindre.

Ce principe est utilisé pour maintenir l'exposition du personnel aux rayonnements ionisants au niveau le plus faible qu'il soit raisonnablement possible d'attendre, en tenant compte des facteurs économiques et sociaux.

Alpha (rayonnement)

Les particules composant le rayonnement alpha (symbole) sont des noyaux d'hélium 4, fortement ionisants mais très peu pénétrants. Une simple feuille de papier est suffisante pour arrêter leur propagation.

Amélioration continu (ISO 14001)

Processus d'enrichissement du système de management environnemental pour obtenir des améliorations de la performance environnementale globale en accord avec la politique environnementale de l'entreprise.

Andra (Agence nationale pour la gestion des déchets radioactifs)

Établissement public industriel et commercial chargé des opérations de gestion à long terme des déchets radioactifs.

L'Andra est placée sous la tutelle des ministères en charge de l'énergie, de la recherche et de l'environnement.

Arrêté qualité

L'arrêté qualité du 10 août 1984 donne un cadre aux dispositions que l'exploitant de toute Installation nucléaire de base doit prendre pour obtenir et maintenir une qualité de son installation et garantir la sûreté de son exploitation. L'exploitant est tenu à la mise en place d'un système assurance qualité pour définir, obtenir et maintenir cette qualité.

ASN (Autorité de sûreté nucléaire)

Autorité administrative indépendante qui participe au contrôle de la sûreté nucléaire et de la radioprotection et à l'information du public dans ces domaines.

ASND

Structure administrative composée du délégué à la sûreté nucléaire et à la radioprotection et de ses deux adjoints, un adjoint militaire nommé par le ministre de la défense et un adjoint nommé par le ministre chargé de l'industrie, ainsi que des personnels mis à disposition, notamment par le ministre de la défense et le ministre chargé de l'industrie.

L'ASND a pour missions notamment de proposer aux ministres la politique en matière de sûreté et de radioprotection, de contrôler les installations nucléaires de base secrètes, d'instruire les demandes d'autorisation et de participer à l'information du public.

Assemblage, assemblage combustible

Autres appellations d'un élément combustible.

Faisceau de crayons combustibles maintenus entre eux par des grilles et des entretoises à la distance permettant l'entretien d'une réaction nucléaire dans le cœur du réacteur. Assurance qualité

Ensemble des activités préétablies et systématiques mises en œuvre dans le cadre du système qualité et démontrées en tant que de besoin, pour donner la confiance appropriée en ce qu'une entité satisfera aux exigences pour la qualité. Le système qualité recouvre l'ensemble des dispositions et procédures mis en place par les industriels et les exploitants pour garantir la qualité des produits et la sûreté du fonctionnement des installations. L'assurance de la qualité revêt une importance particulière dans l'industrie nucléaire. La qualité requise est définie, des moyens appropriés pour l'obtenir sont mis en œuvre et des contrôles sont effectués pour s'assurer de cette qualité.

Atmosphère

Enveloppe gazeuse entourant une planète. Par extension m, mélange gazeux contenu dans un espace confiné.

Atome

Constituant de base de la matière. Un atome est composé d'un noyau (neutrons + protons) autour duquel gravitent des électrons. La réaction provoquée par la fission de certains noyaux produit de l'énergie dite nucléaire.

Autorisation de rejet

Elle fixe, pour chaque installation, les limites et les conditions de contrôle des rejets d'effluents liquides ou ou gazeux.

Elle est accordée par arrêté interministériel après dépôt d'un dossier soumis aux ministères de l'Industrie, de la Santé et de l'Environnement.

B

Becquerel (Bq)

Unité de mesure de l'activité nucléaire (1 Bq = 1 désintégration de noyau atomique par seconde). L'activité nucléaire était précédemment mesurée en Curie (1 Curie = 37 GBq).

Bêta (rayonnement)

Les particules composant le rayonnement bêta (symbole) sont des électrons de charge négative ou positive. Un écran de quelques mètres d'air ou une simple feuille d'aluminium suffisent à les arrêter.

Biosphère

Ensemble des différents milieux naturels de la terre, où la vie est possible de manière continu.

Boîte à gants

Enceinte étanche à parois transparentes (verre, matière plastique) maintenue en légère dépression, utilisée pour le confinement des produits radioactifs liquides, gazeux ou pulvérulents.

CEA

Commissariat à l'Energie Atomique ;

établissement public créé en 1945 pour développer la recherche nucléaire fondamentale et appliquée dans le domaine civil et militaire.

Château de transport

Emballage spécialement conçu pour confiner les matières radioactives (combustibles usés, déchets vitrifiés ...) pendant leur transport et résister à d'éventuels accidents.

CIPR

Commission Internationale de Protection Radiologique ; organisation internationale qui émet des recommandations en matière de radioprotection.

CLI (Commission locale d'information)

Commission instituée auprès de tout site comprenant une ou plusieurs installations nucléaire de base, la CLI est chargée d'une mission générale de suivi, d'information et de concertation en matière de sûreté nucléaire, de radioprotection et d'impact des activités nucléaires sur les personnes et l'environnement pour ce qui concerne les installations du site.

La CLI assure une large diffusion des résultats de ses travaux sous une forme accessible au plus grand nombre.

Combustible

Corps qui a la propriété de brûler en produisant de l'énergie par sa combustion.

Combustible nucléaire

Nucléide dont la consommation par fission dans un réacteur libère de l'énergie. Par extension, produit qui, contenant des matières fissiles, fournit l'énergie dans le cœur d'un réacteur en entretenant la réaction en chaîne. Un réacteur à eau pressurisée de 1300 MWe comporte environ 100 tonnes de combustible renouvelé périodiquement, par partie.

Coques

Morceaux de tubes de longueur 3 cm environ issus du cisaillage en usine de retraitement des gaines métalliques (les crayons) ayant contenu le combustible des centrales nucléaires.

Crayon

Gaine métallique cylindrique de l'ordre de un centimètre de diamètre, dans laquelle sont empilées des pastilles de combustible. Les crayons sont regroupés en « assemblages » aussi appelés « éléments combustibles ».

Criticité

Un milieu contenant un matériau nucléaire fissile devient critique lorsque le taux de production de neutrons (par les fissions de ce matériau) est exactement égal au taux de disparition des neutrons (absorptions et fuites à l'extérieur).

Curie

Ancienne unité de mesure de la radioactivité nucléaire, aujourd'hui remplacée par le Becquerel (1 Curie = 37 Gbq = 37 milliards de Becquerels).

Cycle du combustible

Ensemble des opérations industrielles auquel est soumis le combustible nucléaire. Ces opérations comprennent notamment: l'extraction, le traitement du minerai. la conversion. l'enrichissement, la fabrication du combustible, le retraitement, le recyclage des matières fissiles récupérées et la gestion des déchets. Le cycle du combustible est dit « fermé » s'il comprend le retraitement du combustible irradié et le recyclage de matières fissiles issues du retraitement. Le cycle « ouvert » ou « à un seul passage » comprend le dépôt définitif du combustible après son utilisation dans le réacteur.

DRO5

Demande Biologique en Oxygène pendant 5 jours exprimée en mg/L; quantité d'oxygène consommée en 5 jours par les micro-organismes pour décomposer les matières organiques

contenues dans un effluents aqueux. **DCO**

Demande chimique en oxygène exprimée en mg/L; c'est la quantité d'oxygène nécessaire à la dégradation naturelle chimique des matières oxydables contenues dans un effluents aqueux.

Décharge

Site autorisé pour le stockage contrôlé des déchets industriels, on dit aussi Centre d'Enfouissement Technique (CET). On en distingue 3 classes :

les décharges de classe 1 (DC1), réservées aux déchets toxiques, les décharges de classe 2 (DC2), accueillant les ordures ménagères et déchets assimilés, les décharges de classe 3 (DC3), pour le stockage des produits inertes

Déchets

(gravats, terre ...).

Tout résidu d'un processus de production, de transformation ou d'utilisation, toute substance, matériau produit ou, plus généralement, tout bien meuble abandonné ou que son détenteur destine à l'abandon.

Déchets irradiants

Déchets émettant un rayonnement suffisamment important pour nécessiter une protection vis-à-vis des personnels et du public.

Déchets radioactifs

Les déchets radioactifs sont des substances radioactives pour lesquelles aucune utilisation ultérieure n'est prévue ou envisagée.

Décontamination

La décontamination est une opération physique, chimique ou mécanique destinée à éliminer ou réduire une présence de matières radioactives ou chimiques déposées sur une installation, un espace découvert, un matériel ou du personnel.

Décroissance radioactive ou désactivation (cooling)

Diminution naturelle de l'activité nucléaire d'une substance radioactive par désintégrations spontanées.

Démantèlement

Ensemble des opérations techniques et réglementaires qui suivent la mise à l'arrêt définitif. Les opérations de démantèlement conduisent une installation nucléaire de base à un niveau de déclassement choisi.

Désintégration radioactive

Perte par un atome de l'une ou plusieurs de ses particules constitutives, ou réarrangement interne de ses particules, elle s'accompagne toujours de l'émission d'un rayonnement.

DIR

Déchets Industriels Banals (papiers; cartons, plastiques, bois d'emballage ...), ils sont assimilables aux ordures ménagères.

DIS

Déchets Industriels Spéciaux, ce sont les déchets nocifs pour la santé et l'environnement, tels que les produis chimiques toxiques, les huiles, les piles et batteries, les hydrocarbures.

Dose

Quantité d'énergie communiquée à un milieu par un rayonnement ionisant.

Dose absorbée

Quantité d'énergie absorbée par la matière (vivante ou inerte) exposée aux rayonnements. Elle s'exprime en gray (Gy).

Dose équivalente

Dans les organismes vivants, les effets produits par une même dose absorbée sont différents selon la nature des rayonnements (X, alpha, bêta et gamma). Pour tenir compte de ces différences, on utilise un facteur multiplicatif de la dose (appelé « facteur de qualité ») qui permet de calculer une « dose équivalente ».

Dose efficace

Somme des doses équivalentes pondérées délivrées aux différents tissus et organes du corps par l'irradiation interne et externe. L'unité de dose efficace est le sievert (Sv).

Dose létale

Dose mortelle, d'origine nucléaire ou chimique.

Dose maximale admissible

Dose ne devant pas être dépassée pendant une durée déterminée.

Dosimètre

Instrument de mesure des doses absorbées.

Dosimétrie

Détermination, par évaluation ou par mesure, de la dose de rayonnement absorbée par une substance ou un individu.

DREAL

Direction Régionale de l'environnement, de l'aménagement et du logement

Eau légère

Eau ordinaire (H2O), à distinguer de l'eau lourde (D2O) qui est une combinaison d'oxygène et de deutérium (atome d'hydrogène lourd). Elle est utilisée pour ralentir les neutrons afin de provoquer la fission dans certains réacteurs.

Échelle INES

Échelle internationale de définition de la gravité d'un événement survenant dans une installation nucléaire.

Éco-efficacité

Capacité d'un organisme à offrir des biens ou des services compétitifs améliorant la qualité de vie des hommes tout en réduisant les impacts liés au cycle de vie de ces produits à un niveau soutenable pour la planète. La préfixe éco souligne le double aspect, économique et écologique, du concept.

Écologie

Science ayant pour but d'étudier les relations des êtres vivants entre eux et avec leur milieu naturel.

Écosystème

Élément fonctionnel de base de la biosphère, constitué d'un milieu physico-chimique (biotype) délimité dans le temps et l'espace, et de l'ensemble des êtres vivants qui habitent dans ce milieu (biocénose). Exemple l'écosystème marin.

Effluents

Tout gaz ou liquide, qu'il soit radioactif

ou sans radioactivité ajoutée, issu des installations.

Élément combustible (ou assemblage) Assemblage solidaire de crayons remplis de pastilles d'uranium. Suivant les types de centrales, le cœur du réacteur contient entre 100 et 200 assemblages de combustible.

Emballage

Ensemble des composants nécessaires pour confiner et permettre de transporter de façon sûre une matière radioactive.

Embout

Pièces métalliques situées en partie supérieure (embout de tête) et inférieure (embout de pied), de l'assemblage combustible dans un réacteur.

Enrichissement

Procédé par lequel on accroît la teneur en isotopes fissiles d'un élément. Ainsi, l'uranium est constitué, à l'état naturel, de 0,7 % d'uranium 235 (fissile) et de 99,3 % d'uranium 238 (non fissile). Pour le rendre efficacement utilisable dans un réacteur à eau pressurisée, la proportion d'uranium 235 est portée aux environs de 3 à 4 %.

Entreposage

Stockage provisoire traité avec toutes les précautions de confinement, contrôle et surveillance technique.

Environnement ISO 14001

Milieu dans lequel un organisme fonctionne, incluant l'air, l'eau, la terre, les ressources naturelles, la flore, la faune, les êtres humains et leurs interrelations. (Le terme scientifique est biosphère).

Euratom

Traité signé à Rome le 25 mars 1957, avec le traité fondateur de la CEE, et qui institue la Communauté Européenne de l'Energie Atomique, visant à établir « les conditions nécessaires à la formation et à la croissance rapides des industries nucléaires » et rassemblant aujourd'hui les 27 pays membres de l'Union.

Exposition

Exposition d'un organisme à une source de rayonnement caractérisée par la dose reçue.

Exposition externe

Exposition pour laquelle la source de rayonnement est située à l'extérieur de l'organisme.

Exposition interne

Exposition pour laquelle la source de rayonnement est située à l'intérieur de l'organisme.

Facteur de décontamination

Rapport des quantités présentes de matières radioactives avant et après la décontamination.

Facteur d'impact

Prélèvement ou rejet de matières ou énergie dans l'environnement, à l'origine d'un impact.

Fission

Éclatement, généralement sous le choc d'un neutron, d'un noyau lourd en deux noyaux plus petits (produits de fission), accompagné d'émission de neutrons, de rayonnements et d'un important dégagement de chaleur. Cette libération importante d'énergie, sous forme de chaleur, constitue le fondement de la génération d'électricité d'origine nucléaire.

G

Gamma (rayonnement)

Rayonnement électromagnétique (symbole) de même nature que la lumière, émis par la plupart des noyaux radioactifs.

Graphite-gaz

Respectivement le modérateur et la caloporteur d'un des premiers modèles de réacteur nucléaire, dit UNGG (Uranium Naturel [le combustible], Graphite Gaz). (voir aussi réacteur nucléaire).

Grandeurs associées à la radioactivité

L'activité correspond à l'intensité du rayonnement émis, s'observe par le nombre de désintégrations spontanées par seconde, s'exprime en Becquerels (1 Bq = 1 désintégration par seconde), anciennement en Curies (1 Curie = 37 milliards de Bq).

Gray

Unité de mesure de dose absorbée. La dose absorbée était précédemment mesurée en Rad (1 Gray = 100 Rad).

Hexafluorure d'uranium (UF.)

L'uranium contenu dans les combustibles nucléaires doit être enrichi en uranium 235 fissile. L'enrichissement se fait par diffusion gazeuse, aussi l'uranium est-il tout d'abord converti en un gaz appelé « hexafluorure d'uranium ».

Homme-sievert

Unité de mesure de l'équivalent de dose collectif (parfois appelé dose collective). L'équivalent de dose collectif est la somme, pour un groupe donné d'individus, des équivalents de dose reçus par chaque individu.

Impact environnemental ISO 14 001

Toute modification de l'environnement, négative ou bénéfique, résultant totalement ou partiellement des activités, produits ou services d'un organisme.

Impact environnemental

radiologique

Modification de l'environnement par apport de radioéléments d'origine industrielle caractérisant par une augmentation de la radioactivité.

Impact dosimétrique

Dose d'exposition pour les organismes vivants en général et l'homme en particulier du fait d'un apport de radioéléments.

INB (Installations Nucléaires de Base)

Installation soumise, de par sa nature ou en raison de la quantité ou de l'activité des substances radioactives qu'elle contient, à la loi du 13 juin 2006 (dite Loi TSN) et de l'arrêté du 7 février 2012. Ces installations doivent être autorisées par décret pris après enquête publique et avis de l'ASN. Leurs conception, construction, exploitation (en fonctionnement et à l'arrêt) et démantèlement sont réglementés.

Installations Nucléaire de Base Secrète (I.N.B.S)

Ce sont des installations nucléaires soumises à contrôle et surveillance particuliers du fait de ses activités pour des programmes de Défense. Irradiation

Ancienne dénomination de l'exposition.

IRSN (Institut de Radioprotection et de Sûreté Nucléaire)

L'IRSN est un établissement public à caractère industriel et commercial (ÉPIC) fonctionnant sous la tutelle conjointe des ministres chargés de la Défense, de l'Environnement, de l'Industrie, de la Recherche et de la Santé et du travail. L'IRSN assume notamment un rôle d'expertise technique pour l'ASN.

ISO 14 001

Partie de la norme internationale ISO 14 000 relative à la mise en place d'un système de management environnemental. Les entreprises qui le choisissent s'engagent dans un processus d'amélioration continue de performances environnementales. Elles sont contrôlées tous les trois ans par un auditeur externe à l'entreprise qui certifie que le système de management environnemental est conforme à la norme.

Isotopes

Éléments dont les atomes possèdent le même nombre d'électrons et de protons, mais un nombre différent de neutrons.Il existe par exemple trois isotopes d'uranium:

- l'uranium 234 (92 protons, 92 électrons, 142 neutrons),
- l'uranium 235 (92 protons, 92 électrons, 143 neutrons),
- l'uranium 238 (92 protons, 92 électrons, 146 neutrons).

Un élément chimique donné peut donc comprendre plusieurs isotopes différents par leur nombre de neutrons. Tous les isotopes d'un même élément ont les mêmes propriétés chimiques, mais des propriétés physiques différentes (masse en particulier).

L

Lixiviation

Opération qui consiste à faire passer un solvant sur des matériaux disposés en couche pour en extraire un ou plusieurs constituants solubles. Les sols sont lixiviés naturellement par l'eau de pluie.

Maintenance

Ensemble d'actions tendant à prévenir ou à corriger les dégradations d'un matériel afin de maintenir ou de rétablir sa conformité aux spécifications, lui permettant d'assurer un service déterminé.

Marquage

Présence en faible concentration, dans un milieu rural (eau, sol, sédiment, végétation ...), d'une substance chimique dont l'impact n'est pas nuisible ou dont la nocivité n'est pas démontrée.

MES

Matières En Suspension, c'est l'ensemble des produits non dissous transportés par un liquide en mouvement.

MOX

Mixed Oxyde « mélange d'oxydes » d'uranium et de plutonium destiné à la fabrication de certains combustibles nucléaires. Par extension, dénomination de ces combustibles.

Neutron

Particule fondamentale électriquement neutre qui entre, avec les protons dans la composition du noyau de l'atome. C'est le neutron qui provoque la réaction de fission des noyaux dont l'énergie est utilisée dans les réacteurs nucléaires.

Norme ISO

Normes internationales. Les normes ISO 9000 fixent les exigences d'organisation ou de système de management de la qualité pour démontrer la qualité d'un produit ou d'un service à des exigences clients. Les normes ISO 14 000 prescrivent les exigences d'organisations ou de système de management environnemental pour prévenir toute pollution et réduire les effets d'une activité sur l'environnement.

Noyau

Partie centrale des atomes (formée de neutrons et de protons) où est concentrée l'essentiel de leur masse.

Nucléide

Atome défini par :

- son nombre de masse A, égal au nombre de neutrons et de protons contenus dans le noyau,
- son nombre (ou numéro) atomique Z, égal au nombre de protons,
- son état énergétique.

Un nucléide radioactif est appelé radionucléide, terme préféré à celui de radio-isotope.

Performance environnementale (ISO 14 001)

Résultats mesurables du système de management environnemental, en relation avec la maîtrise par un organisme de ses aspects environnementaux sur la base de sa politique environnementale, de ses objectifs et cibles environnementaux.

pН

Unité de mesure de l'acidité ou de la basicité d'un milieu ; l'échelle va de 0 pour l'acidité maximale à 14 pour la basicité maximale, 7 correspond à la neutralité.

Période radioactive

Temps au bout duquel la moitié des atomes, contenus dans un échantillon de substance radioactive, se sont naturellement désintégrés. La radioactivité de la substance a donc diminué de moitié. La période radioactive varie avec les caractéristiques de chaque radioélément :

- 110 minutes pour l'argon 41,
- 8 jours pour l'iode 131,
- 4,5 milliards d'année pour l'uranium 238.

Aucune action physique extérieure n'est capable de modifier la période d'un radioélément.

Piscine d'entreposage des éléments combustibles

Bassins dans lesquels est entreposé le combustible irradié après le déchargement d'un réacteur, pour laisser les assemblages perdre la plus grande partie de leur radioactivité par décroissance radioactive. L'eau permet de protéger le personnel contre les radiations émises par les combustibles irradiés.

Piézomètre

Appareil permettant de repérer, par un simple tube enfoncé dans le sol, le niveau d'eau d'une nappe phréatique, et de faire des prélèvements dans celle-ci pour analyse.

Plutonium

Élément de numéro atomique 94 et de symbole Pu. Le plutonium 239, isotope fissile, est produit dans les réacteurs nucléaires à partir d'uranium 238.

Politique environnementale 14 001

Déclaration par un organisme de ses intentions et de ses principes relativement à sa performance environnementale globale qui fournit un cadre à l'action et à l'établissement de ses objectifs et cibles environnementaux.

Pollution

Modification négative de l'environnement résultant directement ou indirectement des activités humaines. (Syn. Impact négatif).

Pollution globale

Modification de la biosphère résultant de l'appauvrissement ou de l'enrichissement d'un élément constituant de la matière vivante (C, N P, S ...) dans un compartiment de son cycle biogéochimique.

PPI (Plan Particulier d'Intervention)

Le PPI est établi, en vue de la protection des populations, des biens et de l'environnement, pour faire face aux risques particuliers liés à l'existence ou au fonctionnement d'ouvrages ou d'installations dont l'emprise est localisée et fixe. Le PPI met en œuvre les orientations de la politique de sécurité civile en matière de mobilisation de moyens, d'information et d'alerte, d'exercice et d'entraînement.

Produits de fission

Fragments de noyaux lourds produits

par la fission nucléaire (fragmentation des noyaux d'uranium 235 ou de plutonium 239) ou la désintégration radioactive ultérieure de nucléides formés selon ce processus. L'ensemble des fragments de fission et de leurs descendants sont appelés « produits de fission ». Les produits de fission, dans les usines de retraitement, sont séparés par extraction au solvant après dissolution à l'acide nitrique du combustible, concentrés par évaporation et entreposés avant leur conditionnement sous forme de produit vitrifié dans un conteneur en acier inoxydable.

Programme environnemental

Liste des actions à mener pour atteindre les objectifs et les cibles en précisant les responsabilités, les délais, et les moyens mis en œuvre.

Proton

Particule élémentaire chargée positivement, constituant le noyau avec le neutron.

PUI (Plan d'Urgence Interne)

Le PUI prévoit l'organisation et les moyens destinés à faire face aux différents types d'événements (incident ou accident) de nature à porter atteinte à la santé des personnes par exposition aux rayonnements ionisants.

Qualité

Ensemble des caractéristiques d'une entité qui lui confèrent l'aptitude à satisfaire des besoins exprimés et implicites. Le terme d'entité comprend ici non seulement les produits, mais plus largement une activité, un processus, un organisme ou bien une personne.

Radioactivité

Phénomène de transformation spontanée d'un nucléide avec émission de rayonnements ionisants. La radioactivité peut être naturelle ou artificielle.

Radioactivité naturelle

Sur notre planète, tous les matériaux sont naturellement radioactifs, que ce soit la terre, les eaux, l'air. L'homme a toujours été soumis à différentes sources de rayonnements naturels :

- rayonnements cosmiques émanant du soleil,
- substances radioactives présentes dans les matériaux (radium, thorium dans le granit),
- substances radioactives présentes dans notre corps (potassium 40 essentiellement).
- Le rayonnement moyen ambiant est variable selon les régions. Il est par exemple de l'ordre de :
- 200 nGy par heure dans le Massif Central,
- 150 nGy par heure en Bretagne,
- 90 nGy par heure dans la région Languedoc-Roussillon,
- 50 nGy par heure dans le Jura. L'activité naturelle en potassium 40 est de l'ordre de :
 - 10 Bq par litre pour l'eau minérale,
 - 50 Bq par litre pour le lait.

Radioélément (ou radionucléide)

Toute substance radioactive. Seul un petit nombre de radioéléments existent naturellement : il s'agit de quelques éléments lourds (thorium, uranium, radium ...) et de quelques éléments légers (carbone 14, potassium 40). Les autres, dont le nombre dépasse 1500, sont créés artificiellement en laboratoire pour des applications médicales ou dans les

réacteurs nucléaires sous forme de produits de fission.

Radioprotection

Terme couramment utilisé pour désigner la branche de la physique nucléaire qui concerne la protection des personnes contre les rayonnements ionisants. Par extension, le terme

« Radioprotection » regroupe l'ensemble des mesures destinées à réaliser la protection sanitaire de la population et des travailleurs contre ces rayonnements, et à en assurer le respect des dispositions légales.

Radon

Gaz radioactif naturel émis notamment lors de la désintégration de l'uranium contenu dans le sol, il gagne l'atmosphère par les fissures et cavités naturelles du sol, faute d'aération, s'accumuler dans les grottes, les caves, les habitations ...

Rapport de sûreté (R.S.)

Rapport qui décrit la conception des installations et les dispositions constructives prises pour assurer la sûreté et qui présente l'analyse des risques.

Rapport préliminaire de sûreté

Rédigé au stade de l'avant-projet, contient une description générale de l'installation. Il s'attache à identifier les risques, à dégager les options de sûreté, à lister les principes de sûreté et à justifier le choix du site. Il sert de base à la demande d'autorisation de création, conformément au décret de 1963.

Rapport de sûreté provisoire

Présenté à l'appui de la demande de mise en actif, il traite de l'installation telle qu'elle a été construite et permet de s'assurer de la conformité de la réalisation avec les principes de sûreté du rapport préliminaire de sûreté.

Rayonnement

Emission et propagation d'un ensemble de radiations avec transport d'énergie et émission de corpuscules.

Rayonnement ionisant

Processus de transmission d'énergie sous forme électromagnétique (photons, gamma) ou corpusculaire (particules alpha ou bêta, neutrons) capable de produire directement ou indirectement des ions en traversant la matière. Les rayonnements ionisants sont produits par des sources radioactives. En traversant les tissus vivants, les ions provoquent des phénomènes biologiques pouvant entraîner des lésions dans les cellules de l'organisme.

Réacteur à Eau Bouillante (R.E.B., B.W.R. en anglais)

Réacteur nucléaire dans lequel on utilise l'eau bouillante sous pression pour extraire la chaleur du réacteur.

Réacteur à Eau sous Pression (R.E.P., P.W.R. en anglais)

Réacteur nucléaire modéré et refroidi par de l'eau ordinaire, maintenue liquide dans le cœur grâce à une pression appropriée dans les conditions normales de fonctionnement.

Installation permettant à volonté de produire une réaction de fission en chaîne auto-entretenue et d'en régler l'intensité. Leur technologie varie en fonction de critères de choix portant essentiellement sur la nature du combustible, du modérateur et du fluide caloporteur.

Réaction en chaîne

Suite de fissions nucléaires au cours desquelles les neutrons libérés provoquent de nouvelles fissions, à leur tour génératrices de neutrons expulsés vers des noyaux cibles et ainsi de suite.

Réaction nucléaire

Processus entraînant la modification de la structure d'un ou de plusieurs novaux d'atome. La transmutation peut être soit spontanée, c'est-àdire sans intervention extérieure au noyau, soit provoquée par la collision d'autres noyaux ou de particules libres. La réaction nucléaire s'accompagne toujours d'un dégagement de chaleur. Il y a fission lorsque, sous l'impact d'un neutron isolé, un noyau lourd se divise en deux parties sensiblement égales en libérant des neutrons dans l'espace. Il y a fusion lorsque deux noyaux légers s'unissent pour former un noyau plus lourd.

Recyclage

Réintroduction directe d'une matière dans le cycle de production dont elle est issue en remplacement total ou partiel de la matière première neuve.

Règles Fondamentales de Sûreté (R.F.S.)

Règles concernant les installations nucléaires de base indiquant les conditions à respecter pour être conforme avec la pratique réglementaire française.

Règles Générales d'Exploitation (R.G.E.)

Document décrivant le domaine de fonctionnement prescrit de l'installation en donnant les fonctions importantes pour la sûreté. Il décrit les dispositions prises en exploitation en cas de sortie du domaine de fonctionnement normal.

Rem

Ancienne unité de mesure de l'équivalent de dose, aujourd'hui remplacée par le Sievert (1 Sievert = 100 Rem).

Résidu

Ce qui reste, et qui est non valorisable, après une opération physique ou chimique. Pour le retraitement, le terme a un sens plus strict, il recouvre l'ensemble des déchets ayant fait l'objet d'un conditionnement.

Retraitement

Traitement des combustibles usés pour en extraire les matières fissiles et fertiles (uranium et plutonium) de façon à permettre leur réutilisation, et pour conditionner les différents déchets sous une forme apte au stockage. Les produits de fission et les transuraniens sont vitrifiés.

S

Sécurité, sécurité nucléaire

La sécurité nucléaire comprend la sûreté nucléaire, la radioprotection, la prévention et la lutte contre les actes de malveillance, ainsi que les actions de sécurité civile en cas d'accident.

Séisme

Ensemble des secousses, des déformations brusques de l'écorce terrestre qui constitue un « tremblement de terre ».

Séisme Maximal Historiquement Vraisemblable (S.M.H.V.)

Séisme hypothétique, dont l'intensité serait égale à la plus forte intensité historiquement observée dans la région et dont l'épicentre serait situé à l'emplacement le plus défavorable pour l'installation. L'intensité est évaluée au moyen de l'échelle MSK, qui comporte 12 degrés numérotés, en chiffres romains, de l à XII.

Séisme Majoré de Sécurité (S.M.S.)

Séisme hypothétique lié au séisme

maximal historiquement vraisemblable (S.M.H.V.), de même épicentre que celui-ci, mais ayant dans l'échelle MSK une intensité d'un degré de plus que celle du S.M.H.V. Il est généralement imposé que les installations soient conçues de telle manière que les effets du S.M.S. n'entraînent pas de conséquence inacceptable pour l'environnement.

Sievert (Sv)

Unité de mesure de l'équivalent de dose.

Stockage de déchets radioactifs

Le stockage de déchets radioactifs est l'opération consistant à placer ces substances dans une installation spécialement aménagée pour les conserver de façon potentiellement définitive dans le respect des principes énoncés par la loi.

Sûreté nucléaire

La sûreté nucléaire est l'ensemble des dispositions techniques et des mesures d'organisation relatives à la conception, à la construction, au fonctionnement, à la mise à l'arrêt et au démantèlement des installations nucléaires de base, ainsi qu'au transport des substances radioactives, prises en vue de prévenir les accidents ou d'en limiter les effets.

Système de management environnemental (SME) ISO 14 001

Composante du système de management global qui inclut la structure organisationnelle, les activités de planification, les responsabilités, les pratiques, les procédures, les procédés et les ressources pour élaborer, mettre en œuvre, réaliser, passer en revue et maintenir la politique environnementale.

T

Taux de combustion

Rapport habituellement exprimé en

pourcentage, du nombre de noyaux atomiques d'un élément ou d'un ensemble d'éléments donnés qui disparaissent par combustion nucléaire au nombre de noyaux initiaux.

Note: Ce rapport généralement nommé taux de fission, est sensiblement proportionnel à l'épuisement spécifique, ce qui conduit, par abus de langage, à exprimer le taux de combustion en MWj/kg.

Teneur isotopique

Rapport du nombre des atomes d'un isotope donné d'un élément au nombre

total des atomes de cet élément contenus dans une matière. Elle est exprimée en pourcentage.

Traitement

Opération consistant à séparer, dans les combustibles usés, les déchets de réaction (produits de fission, 3 % environ de la masse), afin de recycler l'uranium et le plutonium résiduels (environ 97 % de la masse du combustible usé).

Tritium libre

Tritium lié à une molécule d'eau, c'està-dire dans laquelle un atome d'hydrogène a été remplacé par un atome de tritium.

Tritium lié

Tritium lié à une molécule organique, c'est-à-dire dans laquelle un atome d'hydrogène a été remplacé par un atome de tritium. Le tritium lié est nommé aussi TOL (Tritium Organiquement Lié).

Unités de mesure

- Becquerel (Bq): Unité de mesure de l'activité nucléaire c'est-à-dire le nombre d'atomes radioactifs qui se désintègrent par unité de temps (1 Bq = 1 désintégration de noyau atomique par seconde).
- L'activité nucléaire était précédemment mesurée en Curie (1 Curie = 37 GBq).
- Sievert (Sv): Unité de mesure utilisée à la fois pour la dose équivalente et pour la dose efficace qui exprime l'impact des rayonnements sur la matière vivante.

Uranium

Élément chimique de numéro atomique 92 et de symbole U, possédant trois isotopes naturels : l'uranium 234, l'uranium, 235 et l'uranium 238. L'uranium 235 est le seul nucléide fissile naturel, une qualité qui explique son utilisation comme source d'énergie.

Uranium enrichi, appauvri

Avant d'être utilisé dans la fabrication des éléments combustibles, l'uranium naturel est enrichi en uranium 235 (les teneurs en uranium 235 vont alors de 3 % à 95 %). L'uranium enrichi en uranium 235 est obtenu, à partir d'uranium naturel, par séparation isotopique. Les processus physiques ou chimiques permettant de produire l'uranium enrichi fournissent simultanément, en contrepartie, un uranium de teneur en uranium 235 plus faible que la teneur naturelle : cet uranium est dit uranium appauvri

Uranium naturel

Élément radioactif naturel, sous forme de métal gris et dur, présent dans plusieurs minerais, notamment la pechblende. L'uranium naturel se présente sous la forme d'un mélange comportant:

• l'uranium 238 fertile, dans la

- proportion de 99,28 %,
- l'uranium 235 fissile, dans la proportion de 0,71 %,
- l'uranium 234.

Valorisation

Capacité à déclasser une installation industrielle en vue de la rendre disponible pour de nouvelles activités industrielles.

Vitrification

Opération visant à solidifier, par mélange à haute température avec une pâte vitreuse, des solutions concentrées de produits de fission et de transuraniens extraits par le retraitement du combustible usé.

7

Zone de confinement

Dans la construction d'une installation où seront présentes des matières radioactives, on interpose entre ces matières et l'extérieur plusieurs barrières de confinement successives, constituant ainsi des zones séparées, appelées « zones de confinement ». Zones contrôlées

Zones dont l'accès et les conditions de séjour sont réglementés pour des raisons de radioprotection.

Orano Recyclage

Opérateur international reconnu dans le domaine des matières nucléaires, Orano apporte des solutions aux défis actuels et futurs, dans l'énergie et la santé.

Son expertise ainsi que sa maîtrise des technologies de pointe permettent à Orano de proposer à ses clients des produits et services à forte valeur ajoutée sur l'ensemble du cycle du combustible.

Grâce à leurs compétences, leur exigence en matière de sûreté et de sécurité et leur recherche constante d'innovation, l'ensemble des 17 500 collaborateurs du groupe s'engage pour développer des savoir-faire de transformation et de maîtrise des matières nucléaires, pour le climat, pour la santé et pour un monde économe en ressources, aujourd'hui et demain.

Orano, donnons toute sa valeur au nucléaire.

Rejoignez-nous sur

www.orano.group

